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Abstract

This Ph.D. thesis entitled Multi-Sensor Fusion for Autonomous Resilient Perception Exploit-
ing Classical and Deep Learning Techniques addresses the critical challenges associated
with perception systems in autonomous applications. Perception plays a vital role in enabling
autonomous systems to understand and interpret the environment, making accurate decisions
and ensuring the safety and reliability of these systems. However, perception is inherently
complex due to various sources of uncertainty, including sensor noise, occlusions, varying
lighting conditions, and dynamic environments.

To overcome these challenges, this research focuses on the development of robust and
resilient perception systems through the fusion of data from multiple sensors. The fusion of
information from diverse sensors can provide complementary and redundant information,
enhancing the overall perception performance and increasing resilience to sensor failures or
limitations. The thesis investigates both classical and deep learning techniques for sensor
fusion, leveraging their respective strengths to improve perception accuracy and reliability.

The classical techniques explored in this research include probabilistic methods, such
as Bayesian filtering and Kalman filtering, which enable the integration of sensor mea-
surements and estimation of the state of the environment. These techniques are enhanced
with advanced methodologies to overcome the problems related to sensor degradation and
sensor unavailability (e.g. due to breakdowns) and to handle complex real-life scenarios with
multiple moving objects and occlusions. Additionally, optimization algorithms are employed
to further improve the performance of the sensor fusion process.

Moreover, deep learning techniques, specifically convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), are investigated for their capability to learn complex
representations and patterns from sensor data. Deep learning models are trained on large-scale
datasets to recognize and classify objects, detect anomalies, and estimate the environment
state. The fusion of deep learning-based outputs with classical techniques allows for a more
comprehensive and accurate understanding of the environment.

Furthermore, the thesis addresses the issue of resilience in perception systems by in-
corporating fault detection and recovery mechanisms. Robustness against sensor failures,
sensor drift, and adversarial attacks is achieved through the integration of redundancy and



x

outlier rejection techniques. The proposed methods enable the perception system to adapt
to changing conditions and maintain reliable performance, even in the presence of sensor
abnormalities (e.g. malfunctioning). To be more specific, this Ph.D. thesis focuses on a
particular perception problem, namely SLAM (Simultaneous Localization And Mapping),
applied to a variety of contexts such as mobile robots and generic agents moving in unknown
environments while acquiring measurements coming from different set of sensors (odometry,
Ultra Wide Band, Ultra High Frequency - RFID, visual systems). The applications presented
in this thesis are related to the following specific cases:

• Odometry-UHF RFID system

• Visual-UWB system

• Visual-UWB system with deep learning approach

• Multiple visual system.

The effectiveness of the proposed multi-sensor fusion approaches is evaluated through
extensive experiments and simulations using real-world datasets and synthetic scenarios. The
evaluation encompasses various autonomous applications, including autonomous driving,
robotics, and surveillance systems. The results demonstrate significant improvements in
perception accuracy, robustness, and resilience compared to single-sensor or naive fusion
approaches.

In conclusion, this Ph.D. thesis contributes to the field of autonomous perception by
presenting novel multi-sensor fusion techniques that exploit both classical and deep learning
approaches. The research advances the state-of-the-art in perception systems by improving
accuracy, resilience, and adaptability, thus paving the way for more reliable and trustworthy
autonomous systems in diverse real-world applications.
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Chapter 1

Introduction

1.1 Problem statement: need for resilient sensor fusion

The field of autonomous systems has witnessed tremendous growth in recent years, thanks
to advancements in sensor technology, machine learning, and artificial intelligence. Au-
tonomous systems are used in various applications such as robotics, self-driving cars, un-
manned aerial vehicles, and many others. The primary objective of autonomous systems is to
perform tasks without human intervention or control.

One of the key elements that enable autonomous systems to operate effectively is sensor
fusion. Sensor fusion involves combining data from different sensors to obtain a more
accurate and comprehensive representation of the environment. In other words, sensor fusion
aims to provide a complete and reliable picture of the surrounding environment to enable
autonomous systems to make informed decisions.

However, relying solely on sensor data can be challenging, as sensors can fail or provide
erroneous data. This can lead to incorrect decisions and potentially hazardous situations.
Therefore, there is a need for resilient sensor fusion to ensure that autonomous systems can
operate effectively in dynamic and unpredictable environments.

The problem statement of this thesis is the need for resilient sensor fusion for autonomous
systems. In this thesis, we will explore the challenges associated with sensor fusion in
autonomous systems, including sensor failures and data uncertainties. We will also investigate
the state-of-the-art approaches for resilient sensor fusion and propose new techniques to
improve the robustness and reliability of autonomous systems.

The rest of the thesis is organized as follows. Chapter 2 provides an overview of the
resilient robot perception topic and of the existing literature on resilient sensor fusion and
the challenges associated with it. Chapter 3 presents the proposed methodology for resilient
sensor fusion. Chapter 4 shows the framework for resilient multi-sensor fusion. Chapter 5
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presents the experimental results and analysis of the proposed approach. Chapter 6 shows the
impact of research, analyzing the resulting publications. Furthermore, Chapter 7 reports a
discussion about the implications of the presented research on the society. Finally, Chapter 8
concludes the thesis and outlines the future directions for research in the field of resilient
sensor fusion for autonomous systems.

1.2 Context

The emergence of autonomous systems has been one of the most significant technological
advancements of the 21st century. Autonomous systems are becoming increasingly prevalent
in many applications, including transportation, agriculture, healthcare, and security. These
systems are designed to operate independently, using a combination of sensors, algorithms,
and decision-making systems. However, the reliability of these systems is heavily dependent
on the accuracy and consistency of the sensor data they receive. Sensor data can be affected
by many factors such as environmental conditions, sensor malfunctions, data uncertainties,
and cyber-attacks.

Sensor fusion is a crucial component of autonomous systems that aims to integrate
data from different sensors to provide a more accurate and reliable representation of the
environment. This integration can be performed at various levels, such as raw sensor data
fusion, feature-level fusion, and decision-level fusion. The primary goal of sensor fusion is
to improve the accuracy and reliability of autonomous systems by reducing the impact of
sensor failures, data uncertainties, and other potential sources of error.

However, achieving resilient sensor fusion is a challenging task, as there are several
factors that can affect the reliability of the system. One of the primary challenges is sensor
failures, which can occur due to hardware malfunction, power loss, or other factors. Sensor
failures can result in incomplete or incorrect data, which can lead to incorrect decisions and
potential hazards. Another challenge is data uncertainties, which can arise due to noise,
interference, or environmental factors. These uncertainties can cause the system to make
incorrect decisions or produce unreliable results. Finally, cyber-attacks can pose a significant
threat to autonomous systems, as they can manipulate sensor data or inject false information
into the system.

To address these challenges, there is a need for resilient sensor fusion techniques that can
ensure the reliability and robustness of autonomous systems. Resilient sensor fusion involves
developing techniques that can detect and mitigate the impact of sensor failures, data uncer-
tainties, and cyber-attacks. These techniques can include redundancy, fault detection, and
correction mechanisms, data validation and filtering, and secure communication protocols.
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This thesis proposes a framework for using existing sensors (such as range sensors,
cameras, etc.) to integrate resilience. Sensor substitution is a key pillar of a “resilience
feedback loop” where augmented information can be provided with alternative sensing
sources. Furthermore, we will provide an overview of the challenges associated with sensor
fusion in autonomous systems and the need for resilient sensor fusion. We will also discuss
the various factors that can affect the reliability of autonomous systems and the importance
of developing robust and resilient sensor fusion techniques. Finally, we will introduce the
proposed methodology for resilient sensor fusion and describe how it addresses the challenges
associated with autonomous systems.

1.3 Thesis objectives

The objective of this thesis is to investigate the challenges associated with multi-sensor fusion
for autonomous localization and mapping, including sensor failures and data uncertainties.
The thesis also aims to review the existing literature on multi-sensor fusion and explore the
state-of-the-art techniques used for resilient sensor fusion in autonomous systems, while
proposing a methodology that combines classical and deep learning techniques for multi-
sensor fusion in autonomous localization and mapping, which is resilient to sensor failures
and data uncertainties.

Furthermore, another goal here is to implement and evaluate the proposed methodol-
ogy using simulation experiments and real-world data to demonstrate its effectiveness in
improving the accuracy and robustness of autonomous localization and mapping. During the
dissertation, the performance of the proposed methodology has been compared with existing
multi-sensor fusion techniques for autonomous localization and mapping (SLAM), and the
advantages and limitations of the proposed approach have been identified. The potential
applications of the proposed methodology have been explored in various domains, including
robotics, autonomous vehicles, and unmanned aerial vehicles.

Finally, another target of this thesis is to also provide recommendations for future research
on multi-sensor fusion for autonomous localization and SLAM, and to identify potential
areas for further improvement in the proposed methodology.

1.4 Motivation for research

In this section, a set of motivations for the research will be presented, highlighting their
impact on the state of the art.
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1.4.1 Integrate sensor resilience for existing hardware

One of the primary motivations for this research is to integrate sensor resilience techniques
into existing hardware. Many existing autonomous systems rely on multi-sensor fusion
techniques to provide accurate and reliable information about the environment. However,
these systems may not be resilient to sensor failures and data uncertainties, which can have a
significant impact on their performance and safety.

Integrating sensor resilience techniques into existing hardware can provide several bene-
fits, such as improved reliability, increased robustness, and reduced downtime. By incorpo-
rating resilient multi-sensor fusion techniques, autonomous systems can continue to operate
even when one or more sensors fail or provide unreliable data. This can improve the safety
and efficiency of the system, reduce maintenance costs, and increase the lifespan of the
hardware.

Furthermore, integrating sensor resilience techniques into existing hardware can be a cost-
effective solution for many organizations that have already invested in autonomous systems.
Instead of replacing the entire system, integrating resilience techniques can enhance the
existing hardware’s capabilities and improve its performance, without requiring significant
investment.

The proposed methodology for resilient multi-sensor fusion in this thesis aims to integrate
classical and deep learning techniques to improve the resilience of existing hardware for
autonomous localization and mapping. This methodology combines redundancy, fault
detection, and correction mechanisms with deep learning techniques to detect and mitigate
the impact of sensor failures and data uncertainties.

Finally, we can improve the dependability, robustness, and performance of autonomous
systems by incorporating sensor resilience approaches into current hardware. We can
also provide enterprises that have already invested in autonomous systems a cost-effective
solution.

1.4.2 Improve sensing ability for new and existing hardware

Another key motivation for this research is to improve the sensing ability of both new and
existing hardware for autonomous tasks. With the increasing demand for more accurate and
reliable autonomous systems, there is a need for more advanced sensing technologies that
can provide a richer understanding of the environment.

Integrating resilient multi-sensor fusion techniques with classical and deep learning
techniques can improve the sensing ability of both new and existing hardware. By combining
multiple sensors, such as range sensors (UHF-RFID, UWB, etc.), IMU, LiDAR, camera,
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GPS, and inertial sensors, autonomous systems can obtain a more comprehensive view of the
environment and overcome the limitations of individual sensors. Additionally, by leveraging
deep learning techniques, autonomous systems can extract more meaningful information
from sensor data, such as object recognition and semantic segmentation.

Improving the sensing ability of autonomous systems can have a significant impact on
various applications, such as robotics, autonomous vehicles, and unmanned aerial vehicles.
For example, autonomous vehicles require highly accurate and reliable sensors to detect
obstacles, navigate complex environments, and ensure passenger safety. Improving the
sensing ability of autonomous vehicles can improve their performance, reduce the risk of
accidents, and increase public trust in autonomous technology.

Moreover, improving the sensing ability of existing hardware can be a cost-effective
solution for organizations that have already invested in autonomous systems. By integrating
more advanced sensors and resilient multi-sensor fusion techniques, organizations can
enhance the capabilities of their existing hardware and extend their lifespan.

By improving the sensing ability, we can provide a more comprehensive understanding
of the environment, improve the accuracy and reliability of autonomous systems, and enable
new applications in various domains.

1.4.3 Apply the resilient sensing framework to problems related to
autonomous systems

Another motivation for this research is to apply the resilient sensing framework to problems
related to autonomous systems, specifically to localization and Simultaneous Localization
and Mapping (SLAM). Localization and SLAM are critical components of autonomous
systems that enable them to navigate and map unknown environments. However, SLAM
algorithms, in particular, are highly dependent on sensor data, which can be affected by
sensor failures and data uncertainties.

Integrating resilient multi-sensor fusion techniques with classical and deep learning
techniques can improve the accuracy and robustness of SLAM algorithms. By combining
multiple sensors, autonomous systems can obtain more accurate and reliable data, which can
improve the performance of SLAM algorithms. Additionally, by leveraging deep learning
techniques, autonomous systems can extract more meaningful information from sensor data,
such as object recognition, semantic segmentation and outlier detection, which can further
improve the accuracy of SLAM.

Applying the resilient sensing framework to SLAM can have a significant impact on
various applications, such as robotics, autonomous vehicles, and unmanned aerial vehicles.
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For example, in robotics, resilient SLAM algorithms can improve the accuracy of robot
navigation and enable robots to operate in more complex environments. In autonomous
vehicles, resilient SLAM algorithms can improve the accuracy of vehicle localization, reduce
the risk of accidents, and improve passenger safety. In unmanned aerial vehicles, resilient
SLAM algorithms can enable more precise and reliable mapping of terrain, which can be
useful for various applications, such as search and rescue, environmental monitoring, and
agriculture.

Moreover, applying the resilient sensing framework to SLAM can provide a cost-effective
solution for organizations that have already invested in autonomous systems. By integrating
resilient multi-sensor fusion techniques with classical and deep learning techniques, organi-
zations can improve the accuracy and robustness of their SLAM algorithms and extend the
lifespan of their autonomous systems.

1.5 Contributions

The contributions of this thesis are the development of methodologies, algorithms, and
test cases to provide several answers to the hypothesis using a multi-sensor approach that
integrates sensor resilience, improve sensing ability and apply the resilient sensing framework
to problems related to the autonomous systems. The resulting journal papers and peer-
reviewed conference papers are presented in Chapter 6.

1. Sensor resilience for localization and SLAM [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]: Proposed approaches to localization and SLAM for autonomous systems (both
unicycle-like robots and generic moving agents) based on classical and deep learning
methodologies. The sensor inputs range from UHF-RFID to UWB range sensors
fusing encoders mounted on the wheels and/or visual odometry coming from tracking
cameras or stereo cameras; the designed systems integrate sensor resilience.

2. Improvement of sensing abilities [11], [12], [13]: Developed a methodology to increase
the sensing abilities fusing several different visual odometry methodologies. The
developed algorithms have been tested and applied on UAVs and UGVs. In the same
context, a distributed architecture for UASs based on ROS 2 has been designed and
proposed.

3. Sensor data processing and generation [14], [15], [16], [17], [18]): Developed several
methodologies to process sensor data exploiting physical characteristics and phenom-
ena (e.g. polarization mismatch for RFID). Design and development of methodologies
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based on deep neural networks (DNN) to generate realistic sensor data to be exploited
in the experimental setups.

1.6 Thesis outline

The thesis is organized with the following structure. Chapter 1 presents an introduction to
the topics that will be presented in the thesis. Immediately following the introduction is
an overview of the resilient robot perception topic and of the existing literature on resilient
sensor fusion and the challenges associated with it in Chapter 2. Chapter 3 presents the
proposed methodology for resilient sensor fusion, focusing on how the presented results
have been achieved. Chapter 4 shows the framework for resilient multi-sensor fusion, and
its application to heterogeneous sensors. Chapter 5 presents the experimental results and
analysis of the proposed approach, showing the methodology effectiveness for several use
cases. Chapter 6 shows the impact of research, analyzing the resulting publications. Chapter 7
reports the details about the impacts of the presented research on society. Finally, Chapter 8
concludes the thesis and outlines the future directions for research in the field of resilient
sensor fusion for autonomous systems.





Chapter 2

Resilient Robot Perception

Establishing the spatial and temporal relationships between the robot and its surroundings
is what perception is all about. In this chapter, we examine the most recent developments
in the two key areas of the resilient robot perception problem: localization and SLAM. We
explicitly introduce the resilient perception issue for intelligent robot systems first. Second,
we concentrate on the localization and SLAM components, which are where our contributions
are made. Third, we examine each module individually to provide the key connected works.
Fourth, we outline the multi-sensor fusion problem and provide a summary of the current
state of the art in relation to the most popular fusion approaches and the various fusion
structures. Finally, we highlight the resilient fusion techniques and fusion architectures
included in our contributions and conclude the examination of the state-of-the-art.

2.1 Robot perception problem

Environment perception for an autonomous robot refers to the ability of the robot to under-
stand and interpret the environment in which it operates using various sensors and algorithms.
The perception system of an autonomous robot typically consists of various sensors, such as
cameras, LiDARs, radars, and sonars, that gather information about the robot’s surroundings.
The information collected by these sensors is then processed by algorithms that extract
useful features and patterns, such as object detection, localization, mapping, and trajectory
planning. Object detection algorithms enable the robot to identify and locate objects in its
environment, such as obstacles, pedestrians, and other vehicles. Localization algorithms help
the robot to determine its own position and orientation relative to the surrounding objects.
Mapping algorithms enable the robot to create a map of its environment, which can be
used for navigation and planning. Trajectory planning algorithms help the robot to plan its
movements and avoid obstacles based on its perception of the environment. The environment
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perception for an autonomous robot thus involves the use of sensors and algorithms to collect,
process, and interpret information about the robot’s surroundings, enabling it to navigate
and interact with its environment in a safe and efficient manner. Environment perception
provides, by processing sensor measurements, information about the environment the vehicle
is immersed in. Perception module is the first of three main modules of an intelligent system
and aims at modelling the environment. Reasoning & decision module uses the information
obtained by the perception module to decide which actions are more adequate. Finally, the
action module executes these actions. In order to obtain good reasoning and control we have
to correctly model the surrounding environment. Figure 2.1 shows the interaction of the
three main components of a generic autonomous robotic system. Establishing the spatial and
temporal relationships between the robot, stationary objects, and moving objects in the scene
constitutes perception. According to Wang’s summary in [19], the vehicle must first be able

Perception
Reasoning & 

Decision
Action

Set of actions

Environment 
Model

Array of 
sensors

Instructions for 
actuators

Fig. 2.1 Architecture of the perception module for an autonomous robotic system.

to locate itself in the scenario by establishing its spatial interactions with static objects in
order to be able to sense the surroundings. Secondly, it has to build a map of the environment
by establishing the spatial relationships among static objects. By establishing the spatial
and temporal relationships between moving objects and the vehicle as well as between
moving and static objects, it must then detect and track the moving objects. Perceiving the
environment entails the selection of different sensors to gain a detailed description of the
surroundings and an accurate identification of the things of interest. Due to the unpredictable
and imprecise nature of the sensors data, all the processes engaged in the perception job
are impacted, and have to manage uncertain inputs. Figure 2.2 shows an example of an
environment representation for a real urban scenario, this figure shows the raw data provided
by a lidar sensor and the final representation of the vehicle’s surroundings obtained using this
data. This representation should display the static and moving objects in the environment.
Robot perception is based upon simultaneous localization and mapping (SLAM) that deals
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Fig. 2.2 Example of a robot perception system. In the top figure, the position of the robot moving in
the environment is depicted (in red), together with the point clouds (in different colors) that represent
the moving objects. In the bottom image, the frames acquired by a camera are depicted with the
tracked moving objects with their estimated speed.

with modelling static parts. In SLAM, when the robot location and map are unknown the
robot generates a map of the environment while simultaneously localizing itself within
the map given all the measurements from its sensors. The final output is a model of the
environment usually composed by the robot pose and the map of the static components.
The management of incomplete information is an important requirement for perception
systems. Incomplete information can be originated from sensor-related reasons, such as
calibration issues, hardware malfunctions, miss detections, asynchronous scans; or from
scene perturbations, like occlusions, weather issues and object shifting. These situations
have to be managed properly in order to take into account the degree of imprecision and
uncertainty and thus to provide an appropriate level of resilience.

Perception is, thus, the process of generating a representation of the environment sur-
rounding the robot by interpreting data coming from robot sensors. The process involves
the estimation of the robot pose in the environment and the relative positions of the objects
around the robot. We exclude from this dissertation, the presence of moving objects. A
graphical representation of the perception problem is then depicted in Figure 2.3. We need to
formally define this problem, in order to discuss the state-of-the-art approaches to solve the
perception problem. Given a set of sensor observations up to time t Zt defined as:

Zt = {z0,z1, . . . ,zt}, (2.1)
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Fig. 2.3 Diagram for the intelligent robot perception.

and the control inputs up to time t Ut defined as:

Ut = {u0,u1, . . . ,ut}, (2.2)

we can define the perception problem as the ability to capture and represent the surrounding
environment with respect to the robot pose. The robot perception provides, up to time t, the
set of estimated robot states:

Xt = {x0,x1, . . . ,xt}, (2.3)

that, in general, are defined by its pose (position and orientation). Second, the perception
module provides the set of static objects in the environment (i.e. the map) at time t:

Mt = {m0,t ,m1,t , . . . ,mK,t}, (2.4)

where K is the total number of the objects in the environment and where each mk, with
k ∈ [0,K], specifying the properties and the location of each object with respect to the robot.

The current literature allows us to define the perception problem as an a posteriori
probability calculation:

P(xt ,Mt |Zt ,Ut ,x0), (2.5)

where x0 represents the initial state of the robot. The equation (2.5) can be regarded to as
a SLAM problem, making the assumption that no moving obstacles have to be tracked or
incorporated into the map Mt ; these objects will be filtered by the SLAM algorithm not being
part of the static map.

In the following sections, we describe in details the SLAM module.
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2.1.1 Preprocessing

A sensor is a device that measures and converts a physical magnitude into readable data that
can be processed by a computer. Sensors are the input mechanisms of perception systems
and the only way to obtain direct information from the environment. Their counterparts are
the actuators, which are the output mechanisms that interact with the environment. Usually,
a sensor monitors a single feature of the environment; consequently, to collect information
about all the essential characteristics of the environment, different sensors are often utilized.
This allows the ability to obtain a more accurate and complete environment representation.
Sensors can be divided into two groups: passive and active, depending on how they interact
with their surroundings. On one hand, passive sensors only measure the energy emitted
by entities in the environment. On the other hand, active sensors emit energy into the
environment and then observe the change this energy causes in the state of the environment.
How many and which sensors to use depends largely on the requirements of the application.
For example, 2D laser scanners are the most popular choice when high accuracy of the
position of an object of interest is required, while camera sensors may be a better choice
when object detection is required. 3D laser scanners are becoming the most popular option
today due to their high accuracy and ability to extract accurate volumetric information of
objects from a scene. However, processing 3D data requires high computing resources. Also,
the 3D laser scanner is not affordable for commercial applications.

2.1.2 Sensor uncertainty

We must be aware of the uncertain nature of sensors in order to accurately model their
behavior. Hardware restrictions that only allow for the provision of an estimate of a real
physical quantity may be the cause of sensor uncertainty. Environment noise or technological
constraints and malfunctions of the sensors can cause random errors in the sensor results,
and constitute another source of uncertainty. Uncertainty can emerge in a systematic fashion
from calibration concerns and from transformation errors from the sensor space to a common
representation ([20], [21]). Uncertainty management is an integral part of the perceptual task
and involves the process of connecting uncertain and imprecise data with partially complete
information and updating confidence coefficients. Sensor measurements are approximations
of real physical quantities. Confidence in a measurement expresses a judgment about the
validity of the information it provides. Its imprecision relates to its information content and
its measurement value, while its uncertainty relates to the reliability of the measurement
([22]).
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Sensor modeling is the description of probabilistic relationships between sensor mea-
surements and the actual state of the environment, used to model its behavior [23]. In
contrast to this concept, there are inverse sensor models that describe the probability of some
environmental configurations in sensor measurements.

2.1.3 Localization

Localization is an important aspect of perception for autonomous mobile robots. For efficient
navigation, robots need to adopt effective localization strategies. Here we want to present a
comprehensive review on localization system, problems, principle and approaches for robots
(see [24] for reference). We classify the localization problems in to three categories based on
the information of initial position of the robot. Then, we discuss on robot position update
principles and, finally, the techniques to localize the robot.

Localization principle

When moving through a given area, a mobile robot uses odometry to maintain track of its
motion. The robot is unsure of its location due to odometry ambiguity. As a result, the
robot must locate itself in relation to a map of its surroundings. Additionally, this prevents
the location uncertainty from becoming limitless. The robot uses its exteroceptive sensors,
including its laser, range, and ultrasonic sensors, to make observations about its surroundings
in order to localize itself. Robot localization can be achieved by combining sensing data with
odometry. Specifically, it is impossible to determine the robot’s precise location even with a
global tracking system (GPS). Only the best approximation of the robot’s position can be
determined from the data it can extract from its sensors. The belief of the robot is indicated
by Sbel . The general process of robot’s position update has two steps:

1. prediction/action update

2. perception/measurement/correction update.

The authors in [25] suggested to represent the beliefs about the robot pose as probability
density functions (PDF). The prediction update is the phase where the robot uses its pro-
prioceptive sensors (e.g. encoders mounted on the wheel, acceleration sensors, camera for
visual odometry) to estimate its position. The odometry, however, brings errors and thus the
uncertainty about the robot pose increases (see Figure 2.4 for reference). Assuming a single
coordinate for the pose representation, the initial pose of the robot x0 is known, thus the PDF
is a Dirac delta function. During the movement, the robot pose uncertainty increases, due
to odometric errors and it accumulates over time. During the perception (correction) phase,
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Fig. 2.4 Localization - Prediction and perception phases. Top: prediction phase. Bottom: perception
phase.

the robot corrects the estimated position using the onboard exteroceptive sensors during the
perception update phase. As an example of exteroceptive sensor, here we suppose that the
robot uses a range sensor (e.g. UWB, UHF-RFID, laser scanner) to compute its current
distance r from the right wall and then its current pose x̃2; this position, however, conflicts
with the position x̂2 estimated in the correction phase. The measurement update corrects the
new location to x̄2, consequently the uncertainty shrinks (solid line in Figure 2.4).

We can define the robot pose at discrete time k, for a differential-drive kinematics, as
follows:

pk =

 xk

yk

θk

 . (2.6)

We can then write the discrete time dynamics of the robot as:

pk+1 =

 xk +
uR,k+uL,k

2 cos(θk)

yk +
uR,k+uL,k

2 sin(θk)

θk +
uR,k−uL,k

d

 , (2.7)
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with uR,k and uL,k representing the distance covered in the interval (kδt ,(k+ 1)δt) (i.e. at
time step k, with discretization step δt) by the right and left wheels, respectively and d is the
distance between the two wheels. The distance uR,k covered at time step k by the right wheel
is related to a noisy encoder reading ue

R,k by the relation ue
R,k = uR,k +nR,k, where the noise

term nR,k is assumed a 0-mean Gaussian random variable with variance given by KR|ue
R,k|,

being KR a positive constant. A similar argument can be applied to the left wheel. In order to
simplify the notation, the following definitions can be adopted:

uk =
uR,k+uL,k

2 , ue
k =

ue
R,k+ue

L,k
2 ,

ωk =
uR,k−uL,k

d , ωe
k =

ue
R,k−ue

L,k
d .

(2.8)

Thus, Equation (2.7) can be simplified as follows:

pk+1 =

 xk +uk cos(θk)

yk +uk sin(θk)

θk +ωk

 , (2.9)

Localization approaches

In this section mobile robot localization approaches will be analyzed from a probabilistic
perspective. We will present Markov localization, Kalman filter (KF) and evolutionary
approaches.

Probabilistic approaches Probabilistic localization approaches based on map identify the
probabilities of a robot being in specific positions. The errors in measurement affect sensor
data, therefore, the probability of a robot in a specific pose can only be computed.

Markov localization The robot can locate itself starting from an unknown position.
Multiple possible positions can be tracked by the robot such that Markov localization can
recover from ambiguous situations. However, the state-space needs to be represented in a
discrete way for updating the probability of possible positions. This discrete representation
may be a topological graph or a geometric grid. The memory requirement for the map size is
limited. In the prediction update phase, the robot’s current location is estimated depending
on the available information on previous locations and odometry input. The current state
of the robot S̄bel(pk) can be computed from the previous estimated position S̄bel(pk−1) and
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control input (proprioceptive data) uk:

S̄bel(pk) = ∑
pk−1

P(pk|uk, pk−1) Sbel(pk−1). (2.10)

Equation (2.10) represents the prior belief of the robot’s state. In the perception (update)
phase, the robot corrects its previous position by combining it with the exteroceptive sensor
inputs. The Bayes rule can then be applied to compute the new robot state Sbel(pk) as a
function of its measurement data zk and the previous state S̄bel(pk):

Sbel(pk) ∝ P(zk|pk,M) S̄bel(pk), (2.11)

where P(zk|pk,M) denotes the probabilistic measurement model, namely the probability of
observing zk, given the knowledge of robot pose pk and map M. Equation (2.11) represents
the posterior belief of the robot’s state. The probabilistic measurement model is calculated
from a noise-free measurement function h which depends on M and pk. In order to derive the
probabilistic measurement model, a noise term is added to the measurement function in such
a way that the probabilistic distribution P(zk|pk,M) peaks at h(pk,M) which is noise-free.
Assuming a Gaussian noise, we have:

P(zk|pk,M) = N (h(pk,M),Rk), (2.12)

where N denotes a multivariate normal distribution having mean h(pk,M) and noise covari-
ant matrix Rk.

Kalman filter-based localization The Kalman filter-based localization solves the
position tracking problem in efficient way. This is an optimal sensor fusion approach (for
linear systems with Gaussian noise) which tracks the robot from an initially known location.
Usually, this localization can be used in continuous world representation. However, in some
situations, the robot’s uncertainty is too large and therefore not really unimodal. In this
case the localization approach can’t capture the possible robot positions and becomes lost
irrevocably. Kalman filter is a special case of Markov localization, but it does not use arbitrary
density function and, instead, it uses Gaussians to represent the robot’s belief Sbel(pk), the
motion model, and the measurement model. A Kalman filter is divided into different phases:
the first phase (i.e. the prediction update) directly applies a motion model having Gaussian
error to the robot’s measured encoder travel. The perception update phase can be divided
into the following steps:

• Observation step. The robot extracts different features from the sensor data.
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• Measurement prediction. The robot generates a measurement prediction consisting of
features that it expects to observe from its estimated position.

• Matching. The robot computes the best match between the features extracted from the
observations and the expected features.

• Estimation. The robot belief state is updated fusing the matching information.

For a multi-variate Gaussian distribution, the multi-variate normal PDF can be defined as:

P(x) = (2π)−n/2 det(Σ)−1/2 exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(2.13)

where µ is the mean vector, Σ is the covariance matrix (symmetric and positive semi-definite
matrix) and x is an n-dimensional vector. In Kalman filter localization, the Gaussian is
defined by mean µk and covariance Σk; these parameters are updated during prediction and
measurement phase.

The Kalman filter approach to localization is very efficient, if compared to Markov
localization, however, the robot initial position should be known with some approximation
and, if the robot gets lost, it cannot recover its position (in contrast to Markov approach).
Therefore, the position tracking problem is effectively solved by Kalman filter, but it does
not solve the global localization problem efficiently. Another assumption in the theory of
Kalman filter is that the system is supposed to be linear and with Gaussian noise. However,
many robotic systems have nonlinearities. In order to overcome this problem, an extension
of the KF to non-linear systems has been developed (Extended Kalman Filter, EKF). In the
EKF, the system is linearized and then the standard KF is applied.

There are other probabilistic localization techniques that have been used in mobile robot
research platforms such as unscented Kalman filter (UKF), grid-based localization and
Monte-Carlo localization (MCL). UKF, like the EKF, also assumes Gaussian distributions.
However, the UKF applies unscented transform to propagate and update the state and its
uncertainty through the non-linear models accurately. In contrast, grid-based localization
and MCL are not bounded by unimodal distributions. In grid localization, the robot belief is
represented by a histogram filter. The MCL uses particle filters to represent the robot belief;
it uses a subset of the whole set of possible positions to construct the approximate belief
state for the robot. This results in tracking and updating a small number of possible locations
instead of all possible locations which in turn reduces the complexity.

Evolutionary approaches Different authors applied evolutionary approaches such
as particle swarm optimization (PSO) ([26] and [27]), genetic algorithm (GA) ([28] and
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[29]) and differential evolution (DE) to basic localization techniques like EKF, MCL, PF etc.
for determining the robot location. The authors in [26] proposed a PSO based localization
technique which overcomes several issues found in PF based schemes. Localization using
PF has major issues such as degeneracy and impoverishment problem which reduces its
performance and PF approaches are also computationally demanding. The proposed method
establishes a recursive framework for tracing out the robot position. This is achieved by
converting the robot localization to dynamic optimization. The developed scheme neither
requires resampling phase as in PF based methods nor distribution of noise. To estimate the
robot position, a stochastic search technique is implemented in the state-space. The proposed
PSO based approach is proved to be more efficient in comparison with standard PF and EKF
based localization techniques. The authors in [30] presented a hybrid localization approach
which combines DE with PSO. The proposed methods are compared with standard MCL
and proved to give better result because of faster convergence and robustness. In [31], the
authors proposed a DEPSO algorithm (DE + PSO). The first phase utilizes the selection
and mutation operations of standard DE approach and then swarms best position is updated
by PSO. The next phase updates velocity and position of particles using PSO followed by
crossover and selection by DE. The two challenging criteria such as global optimization (of
DE) and fast convergence (of PSO) makes DEPSO robust and powerful. Furthermore, in [32]
the authors proposed an effective multi swarm PF for robot positioning. The major focus of
this approach is increasing the performance of PF by PSO. This overcomes the localization
impoverishment occurred in PF based scheme. In [33] the authors combined PSO with
standard EKF for estimating the robot’s current position. The EKF combines map-matching,
position and orientation estimation and dead-reckoning approach. This result in reliable
position tracking. However, in case of high error in map-matching, the proposed localization
system applies PSO to relocate the robot. This is because, unreliable map-matching makes
the robot go missing. The large map-matching error in the present estimate outcomes in low
confidence. In this situation, PSO globally localizes the robot. Therefore, over the global
map, a set of particles are published to search the room with high confidence to discover an
outcome. In this paper, the estimation of pose is obtained by using the RPROP (Resilient
Propagation) for error function minimization. The proposed system analyses the pose error
in virtual and realistic scenario. In [27] the authors developed a self-localization approach for
localizing soccer humanoid robots using image processing. It converts the obtained image
into an image taken from the top view by an inverse perspective map. Then it utilizes PSO to
define the robot’s location relative to origin. The proposed method recognizes position based
on captured images. The method achieves high accuracy as it utilizes ground lines points
for self-localization. With some set of points this method can recognize its own position.
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This causes it to be very noise resistant. The authors in [34] combined PSO and ant colony
optimization (ACO) to estimate the robot location. PSO is used for weight adjustment and
ACO utilizes the neural network topology. Finally, the authors in [28] proposed GA-fuzzy
logic controller (FLC) to adjust the covariance matrices. GA makes the system more powerful
because it tunes the fuzzy membership functions (MF) which results in improving FLC’s
accuracy. Finally, the comparison among EKF, fuzzy logic (FL)-based EKF and EKF based
on GA-FL proves that GA-FL based EKF technique provides accurate result in comparison
other two approaches.

2.1.4 Simultaneous Localization And Mapping

Simultaneous localization and mapping (SLAM) allows robots to operate in an unfamiliar
environment and incrementally build a map of the environment using information provided
by sensors. At the same time, the robot uses this map to determine its position. This map
should only consist of static elements of the environment. This so-called static map needs to
detect and exclude moving objects. Accurate location information is required to detect and
track moving objects near moving vehicles. Location-based sensors such as GPS and DGPS
often fail in unclear areas.

In order to perceive the surrounding environment, we must generate a map representation
of the environment. Three main approaches are widely used by current state of the art
mapping applications:

• Direct approach uses raw data measurements to represent the physical environment
without extracting predefined features (e.g. point clouds representations) as in [35]

• Feature-based approach compresses measurement data into predefined features, for
example geometric primitives like points, lines, circles as in [36]

• Grid-based approach subdivides the environment into a regular grid of cells, and then
a probabilistic measure of occupancy is estimated for each cell as in [37] and in [38].

Despite the advantages of representing any type of environment, a direct approach to memory
usage is impractical and cannot represent sensor uncertainty. The feature-based approach
is compact, but simple primitives fail to adequately represent complex environments. A
grid-based approach is better suited for this task as it can represent arbitrary features, pro-
vide a detailed representation, and consider sensor properties through the definition of the
sensor model. Figure 2.5 shows an example map representation obtained by his three main
approaches above. The occupancy grid approach has become the most common choice
among map representation methods for outdoor environments due to its advantages over the
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Fig. 2.5 Example of map representations. The top left image is a point cloud map, the top right is a
feature map, whilst the bottom is an occupancy grid map.

others. Its main drawback is the amount of memory needed to represent a large outdoor
environment; however, in order to overcome this issue, the works presented by [19] and [39]
help us with an idea that since the range of the sensors is limited, there is the only need to
construct a local grid map limited by the non-measurable regions. Afterwards local maps are
assembled to build a global map. [39] proposes a good solution to solve the SLAM problem
which is based on an occupancy grid to represent the robot map, and free-form objects to
represent moving entities. To correct robot location from odometry he introduces a new fast
incremental scan matching method that works reliably in dynamic outdoor environments.
After a good robot location is estimated, the surrounding map is updated incrementally. The
results of his method in real scenarios are promising.

Robotic perception heavily relies on knowing the location or localization of an au-
tonomous robot. Imagine placing a robot in a strange setting. The robot must be able to
map the environment using sensor inputs, but in order to do so, it must be aware of its
location inside the uncharted territory and vice versa. The contradiction within the issue
makes it difficult to solve: in order to move accurately, a robot requires an accurate map of
its surroundings, yet in order to create an accurate map, the robot has to be aware of its exact
location within the map. SLAM is one of the most challenging task in robotics because of
the close relationship between these two issues. Simultaneous Localization and Mapping
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(SLAM) is a restatement of the prior issues: a robot must be able to incrementally create a
consistent map of the environment using sensor inputs while simultaneously determining its
location within the map when it is placed in an unknown location in an unknown environment.
In a SLAM solution, the robot builds a map of its surroundings and concurrently localizes
itself there using all data from input sensors and odometry. (e.g. camera, radar, lidar).

Initial solutions to solve the SLAM problem can be traced back to the works in [40] and
in [36]. In these publications, the authors use the manipulation of geometric uncertainty
and measurement uncertainty to create a statistical framework for expressing uncertain
connections between landmarks. Additionally, these studies found that estimations of
landmarks viewed by the vehicle are associated as a result of the usual mistake in estimating
the location of the vehicle. As a result, the locations of each landmark were added to the
state vector and updated after every observation. The robot’s requirement for computation
and storage rose as it searched the unfamiliar area for new landmarks. Many solutions create
thresholds or do not take into account correlations between landmarks in order to restrict the
resources expansion ([41]). These works are considered as the basis of modern and more
complex SLAM techniques.

Initial SLAM systems were powered by landmarks, which served as the primary feature
utilized to represent the surroundings. However, depending just on landmarks to find a
vibrant outside setting turned out to be insufficient. The occupancy grids (OG) architecture
for localization and mapping was proposed in [23]. This framework discretizes the real
world into cells, each of which is assigned a probabilistic estimate of its occupancy status.
Typically, a high cell probability value denotes an occupied cell, whereas a low one denotes a
free or empty cell. By using Bayesian approaches, occupancy levels are continuously updated
with new sensor measurements. It is obvious that the grid resolution and processing and
storage capabilities are closely connected. For real-time applications, it is feasible to achieve
a trade-off between representation power and time processing, as demonstrated by a number
of techniques ([42], [39] and [19]). Studies like those in [43] and in [44] demonstrate that
Dempster-Shafer theory ([45]) may be used to describe occupancy when taking into account
evidence distributions that can represent one occupancy state without making assumptions
about the others. These efforts provide an intriguing way to distinguish between the unknown
(no information) and uncertainty brought on by contradictory data concerning cell occupancy
that has been steadily obtained. Additionally, occupancy grid techniques create a standard
representation that may be applied to sensor fusion.

The probabilistic SLAM presented in [39] and in [19] is a widely applied SLAM solution.
This is based on the Bayes’ rule and Markovian assumptions and requires the estimation of
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the following probability distribution:

P(xt ,Mt |z0:t ,u0:t) ∝ P(zt |xt ,Mt)
∫

P(xt |xt−1,ut)P(xt−1,Mt |z0:t−1,u0:t−1)dxt−1, (2.14)

where xt is the robot’s pose at time t, z0:t are the measurements obtained by the robot up to
time t, u0:t are the control inputs applied to the robot up to time t, and Mt is the map of the
environment at time t. The equation (2.14) is composed of two recursive steps: prediction
and correction. The prediction step performs an update based upon:

P(xt ,Mt |z0:t ,u1:t) =
∫

P(xt |xt−1,ut)P(xt−1,Mt |z0:t−1,u0:t−1)dxt−1, (2.15)

where the factor P(xt |xt−1,ut) is known as the robot model. The correction step updates the
information, based on the new available measurements:

P(xt ,Mt |z0:t ,u1:t) =
P(zt |xt ,Mt)P(xt ,Mt |z0:t ,u0:t)

P(zt |z0:t−1,u0:t)
, (2.16)

where the factor P(zt |xt ,Mt) is known as the sensor model. The robot model indicates how
the vehicle has moved from its previous to current state according to the control inputs (e.g.
control commands or odometry values), while the sensor model defines the probabilistic
description of the sensors used to perceive the environment.

Map representation

A crucial decision that serves as the foundation for subsequent perception tasks is how to
depict the environment on the map. Data compression, the degree of environment repre-
sentation, uncertainty management, and sensor settings all play a role in this choice, which
is application-specific. The most common representation techniques are listed after these
elements and the categorization offered in [39] as follows:

• Direct representation. The map is created using raw sensor data. Due to the utilization
of points (mostly range sensors) as the primary components for depiction, this technique
is often referred to as a "point cloud." The approach is simple and has a high degree of
representation, but it lacks uncertainty management and has a high computational cost.
This form is used in [46] and in [47] for SLAM in 3D settings and mapping utilizing
range sensor scans, respectively.

• Feature representation. To discover and extract specific characteristics that are
utilized to describe the map, raw sensor data is processed. The depiction is made
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Table 2.1 Feature comparison among the main map representations schemes.

Scheme
Data Detailed Uncertainty Sensor

compression representation management features

Direct X
Feature-based X X
Grid-based X X X

more condensed by the use of features. The set and quantity of characteristics have
a significant impact on the quality of representation. Although geometrical elements
are desirable, they perform less well in irregular situations where the variety of forms
provide a problem. In order to describe the environment, [36] and [48] presented
SLAM methods employing a variety of geometrical forms and landmarks.

• Grid-based representation. This representation, which was first presented in [23],
discretizes the environment into regular cells and derives the occupancy status of each
cell from the sensor readings taken at each instant. For applications involving both
indoor and outdoor perception, this strategy is common. The grid resolution has a
significant impact on the degree of representation and data reduction.

We consider feature representation as the best suited for our proposed approach. Grid-
based representation may require high amounts of storage (lack of data compression) and
computing processing, for that reason this is not the best suited method to represent the map.
The feature-based representation has the ability to manage uncertainty from sensor measures
and include data compression as shown in Table 2.1.

2.1.5 Visual Simultaneous Localization And Mapping

Visual simultaneous localization and mapping (vSLAM) is a technique that combines com-
puter vision and robotics to enable a robot to navigate an unknown environment while
simultaneously building a map of it. Like the previously discussed technique of simultaneous
localization and mapping (SLAM), vSLAM is an important tool for robots that operate in
environments where accurate maps are not available. While traditional SLAM techniques
rely on sensors such as sonar, lidar, or depth cameras, vSLAM uses visual sensors, such
as cameras, to build a map of the environment. By analyzing the images captured by the
camera, a robot can identify and track features in the environment, and use this information
to determine its position relative to the map.
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In many ways, vSLAM builds on the fundamental concepts of SLAM. Both techniques
rely on the robot’s ability to track its position and movement, and to use sensor data to
update its map of the environment. However, vSLAM introduces a new set of challenges
and opportunities. One major advantage of vSLAM is that it can operate in environments
where other sensors may not be effective, such as in low-light conditions or when there is
interference from other sources. Additionally, visual data can provide a richer and more
detailed map of the environment, which can be useful in applications such as augmented
reality and navigation for autonomous vehicles. However, vSLAM also presents unique
challenges. For example, visual sensors can be prone to errors such as motion blur, lens
distortion, and changes in lighting conditions. Additionally, processing and analyzing large
amounts of visual data in real-time can be computationally expensive. Overall, vSLAM is a
rapidly evolving field that has the potential to revolutionize robotics and computer vision. By
combining the strengths of both disciplines, vSLAM can provide robots with the ability to
navigate and map the world around them, opening up new possibilities for applications in a
wide range of industries.

The three primary categories of visual-based techniques are visual-only SLAM, visual-
inertial (VI) SLAM, and RGB-D SLAM. The first one relates to SLAM methods that solely
use stereo or monocular cameras to capture 2D pictures. Due of their limited visual input, they
provide a significant technological challenge [49]. By incorporating an inertial measurement
unit (IMU), which is available in their miniaturized size and low cost while achieving high
accuracy, essential aspects of many applications that require lightweight design, such as
autonomous race cars [50], the robustness in the sensor’s tracking of the visual-SLAM
algorithms may be increased. A depth sensor may also be used by visual-based SLAM
systems, and the depth data may then be processed using an RGB-D method.

The work in [51] and in [52] suggests a SLAM approach that goes from the issue
definition to the environment models in order to get a broad summary and introduction to the
SLAM problem. Additionally, in [53] the authors evaluate the primary unresolved issues and
potential developments for the SLAM. The authors in [54] and in [55] offer an overview of
the key concepts used in the visual-only SLAM techniques and the basic algorithms taking
into account reviews and polls of visual-based techniques. The RGB-D-based SLAM issue is
also briefly discussed in [54]. The major ideas used in the visual-based SLAM approaches
are presented in an overview in [56] and in [49], with an emphasis on the visual-only and
RGB-D-based approaches and descriptions of the key algorithms. In their latest article [57]
the authors suggest a categorization of the primary visual-based SLAM algorithms and
conduct a historical study. The basic ideas and methods of the visual-inertial SLAM and
visual-inertial odometry approaches are presented by the authors in [58] and in [59], taking
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into account the filtering-based and optimization-based viewpoints. The methods used up
until 2015 are given in [58], and the formulas used up until 2018 are also included in [59].
[60] also provides a summary of the key ideas and methods used in visual-inertial guidance.
The authors in [61] give a global view from the primary ideas used in RGB-D modeling with
regards to the RGB-D approaches. An summary of the key ideas and an explanation of the
major RGB-D-based SLAM algorithms are presented in a recent study in [62]. There are a
number of studies and surveys about visual-based SLAM methods in the literature; however,
the majority of them are restricted to just one or two of the three primary approaches and do
not go into depth about the algorithms. A review that covers the three approaches and the
basic algorithms as also presented in [63] is then given here.

Visual-Based SLAM concepts

The major traits of the visual-based approaches are discussed in this part, along with concepts
linked to visual-based SLAM and odometry algorithms. One or more sensors in the sensor
system serve as the information source for the visual-based SLAM methods, which receive
2D pictures. Initialization, tracking, and mapping are the three major components that make
up the visual-based SLAM algorithms [49]. Figure 2.6 depicts the three major components
that are typically present in methods to visual-based SLAM. In Figure 2.6, depending on the

Fig. 2.6 General components of a visual-based SLAM. The depth and inertial data may be added to
the 2D visual input to generate a sparse map, semi-dense map and a dense reconstruction.
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used approach—namely, visual-only, visual-inertial, or RGB-D-based—the input for visual-
SLAM systems can be a 2D picture, a 2D image and IMU data, or a 2D image and depth
data. The two primary stages of monitoring and mapping are determined by the initialization,
which also creates an initial map. The constant assessment of the sensor’s position is carried
out by the tracking procedure. The algorithm, which solves the perspective-n-points issue,
creates 2D–3D correspondences between the present frame and the map. This issue can be
resolved in a number of methods, with EPnP (enhanced Perspective-n-Point) being one of
the most prevalent approaches [64]. The 3D framework is computed and expanded as the
camera travels thanks to the mapping process. The utilized method affects how the depth data
is calculated. Finally, depending on the method used, the mapping steps should produce a
sparse, semi-dense, or dense 3D reconstruction. Despite the fact that we primarily refer to the
ideas as being part of the SLAM methodology, we also take into account visual-SLAM and
visual-odometry (VO) techniques in this article because of their close connections. Through
sensors as a source of data, the VO algorithms also attempt to predict a robot’s location. The
primary distinction between visual-SLAM and VO is whether or not the predicted route and
map are taken into account globally [54]. While VO only conducts local optimizations, loop
closure detection is a feature of visual-SLAM algorithms, allowing them to rectify drifts that
have gathered at the conclusion of the robot’s trajectory.

Visual-Only SLAM The foundation of the visual-only SLAM devices is 2D image analysis.
The system conducts the initialization process to establish a global coordinate system and
rebuild an initial map following the collection of pictures from multiple points of view.
Initializing the map points with high ambiguity in the feature-based algorithms that depend
on filters (filtering-based algorithms) is the first stage. These map points may later resolve
to their real locations. Following this step is tracking, which makes an effort to determine
the camera’s position. As more unfamiliar events are witnessed, the mapping procedure
simultaneously adds new points to the 3D reconstruction.

The binocular or stereo camera used by the visual-only SLAM technology is an option.
Given the tiny size of the sensor (the smallest of all the offered approaches), its cheap
cost, simple calibration, and its low power usage, the monocular camera-based SLAM is
a well-explored area [65]. Despite these benefits, monocular-based systems have a greater
initialization complexity because at least two distinct perspectives are required to identify
the initial depth. They also present estimation issues with drift and scale estimation. Stereo
cameras, which offer the primary benefit of featuring the stereo image in just one frame, can
help to solve this last issue. However, compared to a straightforward binocular camera, the
sensor area is more important. Additionally, each frame needs to go through more processing
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because of the need for picture correction during the stereo matching step. There are two
primary categories of visual-only SLAM: feature-based and direct.

Direct methods The direct techniques, in contrast to the feature-based ones, use the
sensor data directly, without any pre-processing, while also taking into account the intensities
of the pixels and reducing photometric error. This approach has a wide range of methods, and
the reconstruction can be dense, semi-dense, or sparse depending on the strategy used. Since
the combined optimization of both structure and camera locations is computationally more
costly for dense and semi-dense reconstructions than for a sparse one, the reconstruction
density is a significant barrier to the algorithm’s real-time operation [66]. According to their
front-end and back-end, or the portion of the algorithm responsible for the abstraction of the
sensor’s data and the portion responsible for the analysis of the abstraction, respectively.

Feature-based methods Features-based SLAM methods take into account a predeter-
mined number of keypoints, also known as points of interest. They can be found in multiple
pictures and matched by contrasting their characteristics; this procedure yields information on
camera pose prediction. The feature, or the data used by the algorithm to perform the tracking
and mapping, is made up of the descriptor data and keypoint position. The feature-based
techniques can be used in embedded versions because they do not utilize all of the frame in-
formation. The feature extraction, however, might not succeed in a textureless world [67] and
produces a sparse image that offers less information than a dense one. Figure 2.7 illustrates
the primary distinction between feature-based (indirect) and direct methods.

Visual-Inertial SLAM Inertial readings are used in the VI-SLAM method to calculate
the structure and sensor position. An inertial measurement unit (IMU), which combines
a gyroscope, an accelerometer, and a magnetic instrument, is used to collect the inertial
data. In this manner, the IMU is able to provide data on the angular rate (gyroscope),
acceleration (accelerometer), and, additionally, the magnetic field surrounding the instrument
(magnetometer). While adding an IMU may increase the environment’s information richness
and offer greater accuracy, it also makes the algorithm more complex, especially during
the initialization step because the algorithm must also estimate the poses of the IMU in
addition to the camera. The sort of fusion between the camera and IMU data, which can
be loosely or closely linked, can be used to categorize VI-SLAM methods. The IMU data
are used to estimate the direction and shifts in the sensor’s location by the weakly linked
techniques, which do not combine the IMU states to estimate the complete posture [59]. The
closely coupled techniques, on the other hand, rely on fusing camera and IMU data into
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Fig. 2.7 General differences between direct and feature-based methods. Top: main steps followed
by a direct method, resulting in a sparse (generated from the reconstruction of sequence_02/TUM
MonoVO [68] with the DSO algorithm [69]) or dense reconstruction (Reprinted from [70]), accord-
ing to the chosen technique. Bottom: main steps followed by the feature-based methods, result-
ing in a sparse reconstruction (map generated with the ORB-SLAM algorithm ([71], [72]) in the
MH_01/EuRoC sequence [73]).
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a motion equation to produce a state prediction that takes into account both types of data.
Additionally, VI-SLAM algorithms offer various versions based on their back-end strategy,
which may be optimization- or filtering-based. While optimization-based methods (also
referred to as keyframe-based approaches) depend on global optimizations, which boost the
system’s precision as well as the algorithm’s computational cost, filtering-based approaches
for VI-SLAM rely on feature extraction at the front end.

RGB-D SLAM With the release of Microsoft’s Kinect in 2010, SLAM systems built on
RGB-D data began to gain more notice. RGB-D sensors enable SLAM systems to directly
obtain the depth information with a practicable precision achieved in real-time by inexpensive
hardware. They are composed of a monocular RGB camera and a depth sensor. Since the
RGB-D devices immediately supply the depth map to the SLAM systems, this approach’s
basic framework for SLAM is different from the others that have already been demonstrated.
The majority of RGB-D-based systems use the depth maps and iterative closest point (ICP)
method to find the sensor and reconstruct the entire structure. The benefits of RGB-D
systems include the provision of dense depth maps and color picture data without the need for
pre-processing, which reduces the difficulty of SLAM setup [49]. Despite this, this strategy
works best [74].

Visual-SLAM algorithms

The previous section’s examined approaches each include a number of algorithms, making it
challenging to choose the best SLAM or odometry method for a given project’s requirements.
In order to achieve a short overview of each strategy and a systematic analysis based on
six chosen criteria that, in general, are presented as limiting factors of SLAM projects,
we present the most typical algorithms of each approach, picked based on literature input.
In addition to the suggested criteria, it is important to describe the scene and application
because some situations may have characteristics that call for particular assessment criteria,
as in the analysis in [75]. Six parameters that affect system dimensioning, accuracy, and
hardware implementation taking into account the general SLAM system strategy can be
introduced. The following factors are important to consider: algorithm type, map density,
global optimization, loop closure, availability, and embedded implementations.

• Algorithm type: This criterion describes the approach that the program has used.
We categorize the visual-only algorithms into feature-based, mixed, and straight ap-
proaches. They must be founded on filtering or optimization, given the visual-inertial
techniques. Finally, there are three different types of monitoring methods for the
RGB-D approach: direct, mixed, and feature-based.
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• Map density: Generally speaking, a dense reconstruction uses more processing re-
sources than a sparse one, affecting memory utilization and computational cost. On
the other hand, it offers a more precise and thorough reconstruction, which could be
crucial for SLAM projects.

• Global optimization: Global map optimization, which is a method for compensating
the accumulated mistake brought on by camera movement while taking the consistency
of the complete building into account, may be included in SLAM algorithms.

• Loop closure: The SLAM algorithm’s ability to recognize previously detected images
in order to calculate and rectify the drift collected during sensor movement is referred
to as the loop closure detection.

• Availability: A number of SLAM algorithms are open source and made accessible by
the writers or have third parties make their implementations available, making it easier
for people to use and reproduce them.

• Embedded implementations: Embedded SLAM implementation is a developing area
with many uses, particularly in the automation and automotive industries. Since
there must be a trade-off between algorithm design in terms of energy consumption,
memory usage, and processor usage, this measure relies on the hardware limitations
and uniqueness for each algorithm. We compiled the key articles we discovered
showcasing completely integrated SLAM systems in hardware like microcontrollers
and FPGA boards.

In the present dissertation we focus on Visual-Only SLAM algorithms that have been reported
on a timeline in Figure 2.8 and specifically on the ORB-SLAM2 algorithm [72] that has been
widely used in literature and has very good performances.

Fig. 2.8 Timeline representing the most important visual-only SLAM algorithms (adapted from [63]).

ORB-SLAM2 The most advanced feature-based algorithm is the ORB-SLAM2 algo-
rithm [72], which is built on the ORB-SLAM algorithm [76]. It runs tracking, local mapping,
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and loop closure in three separate processes. By identifying feature correspondences and
reducing the reprojection error, the first thread locates the sensor. Map maintenance tasks are
carried out by the local mapping process. The final component, known as loop closure, is
in charge of finding new loops and fixing drift errors within existing loops. The algorithm
then completes a comprehensive bundle adjustment after handling the three threads, taking
into account the entire structure and approximated motion consistency. The components that
make up the program are illustrated in Figure 2.9. The ORB-SLAM2 algorithm uses global
optimization and loop closing methods while taking into account the monocular, stereo, and
RGB-D approaches. However, if the system fails to identify a high-similarity frame, the
monitoring failure scenario could result in a lost state [77]. Real-time operation in embedded
platforms is challenging because this technique must gather the images at the same frame rate
as it analyzes them [78]. Despite the reality that there are a number of embedded versions
documented in the literature, this is the case. Both in [79] and in [78] ORB-SLAM algorithm
has been applied on various CPU- and GPU-based systems, and the authors assessed the
performance of each thread on each platform. An enhanced version of the ORB-SLAM2
algorithm has been developed as part of this thesis. Specifically, the ORB-SLAM2 algorithm
has been heavily modified in order to increase the number of parameters controlling the
algorithm, to include compilation procedures for ARM processors, and to integrate several
optimizations for Nvidia CUDA GPUs. The software is provided open source in [80]. The
ARM adaptation forced us to disable all the optimizations related to the x86 architecture,
with a consequent performance drop especially in the feature extraction and computation
phases, where AVX/SSE vector instruction sets have been widely used. For that reason, the
optimization for CUDA GPUs has been taken into account as a mandatory activity in order
to address the performance issues.

Fig. 2.9 Diagram depicting the ORB-SLAM2 algorithm (adapted from [72]).
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Visual-SLAM Deep Learning-Based Algorithms

Recent works propose the incorporation of deep learning techniques [81] to increase the
system’s robustness in the Visual-SLAM system. The UnDeepVO [82] is a noteworthy
program that applies deep learning principles. Through a deep neural network, this monocular
visual-odometry method can estimate posture and depth. The authors use stereo pictures
to train UnDeepVO through unsupervised learning, and they also take both spatial and
temporal rich information into account when calculating the training’s loss function. In
comparison to other monocular techniques like the ORB-SLAM, this approach was found to
be more reliable and precise (without loop closure). The DeepSLAM was recently suggested
by the same study team [83]. The system takes into account tracking- and mapping-nets
that were learned using unsupervised learning and took into account spatial and temporal
geometry in the loss function. A Loop-Net is also included in the method to carry out loop
identification. In comparison to other binocular algorithms like ORB-SLAM, DeepSLAM
demonstrated superior performance as well as greater stability. The DF-SLAM [84] is another
pertinent deep learning method. In contrast to ORB-SLAM, which employs hand-made ORB
features, DF-SLAM utilizes deep local features that are described by the TFeat network. The
authors compare DF-SLAM and ORB-SLAM2 in a number of findings; for the majority of
sequences, the suggested method performed better. Recently, several overviews ([85], [86],
[87]) that cover deep learning-based methods used for depth estimation and the fundamentals
of SLAM’s orientation have been published in the literature.

2.1.6 Multi-sensor fusion for robot perception

The Joint Directors of Laboratories Data Fusion Working Group came up with the idea
for the data fusion process paradigm. This model serves as a general blueprint for a data
fusion system and was developed to serve as a foundation for the development of numerous
data fusion methods [21]. The connections between the data sources and the information
extraction procedures are specified by the fusion model. Different processing levels can
be found between the data extraction and the end information provided to judgment stages,
according to the authors of [21]:

• Source processing: creates preliminary information from raw data.

• Object refinement: refines the preliminary information to identify objects.

• Situation refinement: establishes the relations among identified objects.

• Threat refinement: tries to infer details about future states of the system.
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• Process refinement: analyses the performance of the previous levels and determines if
they can be optimized.

• Data management: takes care of the storage management of the processed data.

The process of combining multiple views from various sensor sources is known as multi-
sensor data fusion, and it aims to produce a more accurate, robust, and comprehensive
depiction of the environment of interest. It is anticipated that the fused representation will
outperform the sources’ separate outputs. We will cover the most recent multi-sensor fusion
research from two angles in the parts that follow. The most popular techniques for fusing
sensing data will be examined first, with an emphasis on their benefits and shortcomings.
Second, we’ll look at the various layers of the perception issue where fusing can be done.
The final viewpoint enables us to examine the benefits of carrying out fusion at each stage
and to concentrate on the problems that still need to be resolved in the associated fusion
approaches.

Fusion methodologies

The majority of multi-sensor fusion approaches are based on probabilistic techniques, but
techniques based on the theory of evidence have been suggested as an option to many
categories of robot sensing in addition to multi-sensor fusion. We will go over the primary
fusing strategies within these two options in the subsections that follow. After that, we’ll go
over the various multi-sensor fusion designs for intelligent robot awareness.

Probabilistic methodologies The probabilistic methodologies rely on the Bayes’ rule,
which provides means to make inferences about an event described by a state x, given
a measurement observation z. The relationship between x and z is encoded in the joint
probability distribution P(x,z) which can be expressed as follows:

P(x,z) = P(x|z)P(z) = P(z|x)P(x), (2.17)

then, the Bayes’ rule in terms of the conditional probability P(x|z) is:

P(x|z) = P(z|x)P(x)
P(z)

. (2.18)

In equation (2.18), P(x|z) represents the probability of event x occurring given that event z
has occurred. P(z|x) represents the probability of event z occurring given that event x has
occurred. P(x) and P(z) represent the probabilities of events x and z, respectively (the prior
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probabilities). To obtain more information about the state x, an observation z is made. These
observations are modelled in the form of the conditional probability P(z|x) which describes,
for each fixed state x, the probability that the observation z might be made. New likelihoods
associated with the state x are computed from the product of the original prior information
(P(x)) and the information gained by an observation (P(z|x)). This information is embedded
in the posterior probability P(x|z) which describes the likelihoods associated with x given the
observation z. In this fusion process, the marginal probability P(z) is used to normalize the
posterior probability. P(z) plays an important role in model validation or data association as
it provides a measure of how well the observation is predicted by the prior. Equation (2.18)
provides a principled means of combining observed information with prior beliefs about the
state of the world.

Conditional probability P(z|x) functions as a sensing model in driving uses. The probabil-
ity P(z|x) is created when creating a sensor model by first putting the value of x = x′ and then
computing P(z|x = x′). Alternatively, z = z′ is fixed and a probability function P(z = z′|x)
is derived when this sensor model is applied and observations are made. The proportional
probability that various values of x result in the observed value of z is represented by the
likelihood function. The posterior, or observation update P(x|z), is created by multiplying
this probability by the prior, which is also specified on x. The Bayes’ rule can be used for
multi-sensor fusion and it requires conditional independence that can be expressed as follows:

P(x|Zn) = CP(x)
n

∏
i=1

P(zi|x), (2.19)

where C is a normalizing constant. The equation (2.19) states that the posterior probability
on x given all the observations Zn is proportional to the product of prior probability and
individual likelihoods from each source of data (sensor). So, the Bayes’ rule can be written
in the recursive form as follows:

P(x|Zk) =
P(zk|x)P(x|Zk−1)

P(zk|Zk−1)
, (2.20)

where P(x|Zk) contains all the past information, thus, when a new information P(zk|x) arrives,
the previous posterior takes on the role of the current prior and the product becomes the new
posterior, after normalization.

Occupancy grids Conceptually, using probabilistic occupancy grids (POGs) is the
easiest way to apply Bayesian data merging techniques. POGs, despite being straightforward,
can be used to solve a variety of issues related to the perception job, such as mapping ([39]
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and [19]), moving object recognition ([88] and sensor fusion ([89]). When mapping, the area
of interest is discretized into a matrix of spatial units of uniform size. Each cell contains
a probability number, P(xi, j), that indicates the occupancy status of the cell; typically, a
cell can be either vacant or filled. Maintaining a probability distribution on potential state
values P(xi, j) at each grid cell is the objective. Bayesian techniques require sensor models
or likelihood functions to fill the matrix after the state has been established. In order to do
this, it is necessary to define the probability distribution P(z|xi, j) that links each potential
grid state to a distribution of data. This is typically done as an observation grid per sensor
input, resulting in a grid of likelihoods over each xi, j occupied state for a given observation
z = z′. One can see that the precision and scale of the surroundings have a significant
impact on the processing cost of keeping an updated fused occupancy grid. Grid-based
fusing is suitable when the domain size and scale are minimal or when it is possible to
make inferences about the environment that will result in a smaller grid and lower updating
costs. Grid-based techniques offer simple and efficient merging strategies in these situations.
Grid-based techniques can be enhanced in a variety of ways, including by using hierarchical
(quadtree) grids ([90]), unusual (triangular, pentagonal) grids ([91]), or working with local
map assumptions to prevent a process of global map updating.

Kalman filter The Kalman filter (KF) is a recursive linear predictor that, using periodic
measurements Z of the state, iteratively determines an estimate for a continuously evolving
state x. KF uses an explicit statistical model to describe the evolution over time of the param-
eter of interest x(t) and an explicit statistical model to describe the relationship between the
observations z(t) and this parameter. To depict the conditional mean x̂(t) = E[x(t)|Zt ], the
gains used in a KF are selected to guarantee that the resulting approximation x̂(t) minimizes
the mean-squared error. Due to its characteristics, KF is well adapted to handle multi-sensor
estimation and data integration issues. First, the clear description of the processes and
observations makes it possible to integrate a broad range of various sensor models into the
fundamental algorithm. Second, it is feasible to numerically assess each sensor’s contribution
to system performance through the consistent application of statistical measures of uncer-
tainty. The algorithm’s linear iterative structure also guarantees that its implementation is
straightforward and effective. The random variables defining process and measurement noise
are all assumed to be Gaussian, temporally uncorrelated, and zero-mean as a fundamental
presumption in the development of the Kalman filter. The Kalman filter’s findings could be
deceptive if these restrictions are not met. In these circumstances, more advanced Bayesian
filters are typically used. When at least one of the state model or the data model is nonlinear,
the extended Kalman filter (EKF), a modification of the Kalman filter, may be used ([92]).
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The non-linear variant of KF is known as EKF. The unscented Kalman filter is another non-
linear variant of KF (UKF). In the UKF, the underlying Gaussian distribution is represented
by a fixed selection of points that approximates the probability density. These values will
be transformed non-linearly in order to estimate the posterior distribution. The process is
referred to as the unscented transform. In terms of error prediction, UKF is typically more
reliable and precise than the EKF when strong non-linearities are there ([93]).

Monte Carlo methods Probability distributions are described by Monte Carlo (MC)
techniques as a collection of weighted observations from an underlying state space. These
examples are then used by MC filtering to mimic Bayes’ rule-based probabilistic reasoning.
Numerous models or examples are run. A probabilistic behavior of the replicated process
is found by examining the statistics of these samples as they move through the inference
process ([94]). When state transition models and data models are extremely non-linear, MC
techniques work well. Because sample-based techniques can depict very broad probability
densities, this is the case. Particularly, Monte Carlo methods are good at handling multi-
modal or numerous hypothesis density functions ([39]). MC techniques are thought to
fall somewhere between grid-based and parametric data merging techniques. However, in
situations where the state space has a large dimension, MC techniques might not be suitable.
This is due to the fact that the state space dimension grows exponentially with the number of
samples needed to acquire a correct model. Fortunately, by marginalizing out states that can
be described without sampling, the dimensionality increase can be restrained.

Limitations of probabilistic methods The issue of information representation, and
consequently information integration, is significantly impacted by uncertainty representation.
The representation of random uncertainty is well adapted for probabilistic techniques, but
they do not advocate a clear picture of imprecision. We can enumerate the major problems
with probabilistic techniques for information fusion in terms of their perceptual constraints:

• Complexity: the need to specify a large number of probabilities to be able to apply
probabilistic reasoning methods correctly.

• Inconsistency: the difficulties involved in specifying a consistent set of beliefs in terms
of probability and using these to obtain consistent deductions about the events or states
of interest.

• Precision of models: the need to have precise specifications of probabilities about
barely known events.
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• Uncertainty: the difficulty in assigning probability in the face of uncertainty, or
ignorance about the source of information.

Furthermore, three main theories that intend to overcome the previous limitations of proba-
bilistic methods should be mentioned: interval calculus, fuzzy logic and theory of evidence.

Interval calculus Based on the concept of expressing uncertainty by using an interval to
limit actual parameter values, interval calculus (IC) was developed ([95]). Using IC could
have benefits over random approaches. In cases where there is a dearth of probabilistic
knowledge but where sensor and parameter error is known to be bounded, intervals offer a
reasonable measure of uncertainty. The actual value of the state x is known to be limited
from below by a and from above by b, where x ∈ [a,b], according to IC methods. This
assertion serves to simply characterize the ambiguity in the parameter x. In particular, the
assertion x ∈ [a,b] does not necessarily suggest that x is equally likely (uniformly distributed)
over the range [a,b]. It is crucial that no other extra probabilistic structure is inferred.
Object recognition techniques based on IC are sometimes employed. The inability to obtain
results that converge to a desired value and the difficulty of encoding dependencies between
variables, which are at the heart of many data fusion issues, such as variables defining the
state and appearance of a moving object, prevent them from being widely used in data fusion.

Fuzzy logic A well-known technique for expressing uncertainty in management and data
fusion uses is fuzzy logic. It works with approximate thinking as opposed to precise
reasoning. According to [96], fuzzy reasoning is founded on degrees of truth rather than
absolute numbers. Probabilities and degrees of truth are essentially separate; degrees of truth
reflect membership in ill-defined sets, not the probability of an occurrence or circumstance.
Fuzzy logic offers a rigorous mathematical structure that enables the exact and rigorous
representation and study of ill-defined conceptual events. It is also suitable for circumstances
where fuzzy connections, conditions, and events occur as a modeling language. In contrast to
fuzzy sets, where membership is based on a degree between the potential absolute values,
traditional logic sets have binary membership, where a variable is either in the set or it is
not. Truth values, vocabulary (operators), and reasoning processes can be used to identify
logic as the foundation for reasoning (tautologies, syllogisms). Dual logic uses boolean
truth tables to describe its operators and allows truth values to be either true or false. The
truth values in fuzzy logic are represented by language variables true and false rather than
being limited to the two values true and false. Although fuzzy logic is frequently used in
control applications, its constraints are taken into consideration in sensor integration for
driving applications. It can only a small degree of participation duties. In addition, choosing
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appropriate membership functions and fuzzy rules is challenging and gets more difficult as
the number of sensing inputs or items of interest rises. Additionally, thorough testing is
necessary for the fuzzy system’s proof and confirmation, which is crucial in systems where
safety is a key consideration [97].

Evidence theory A significant option to probability theory is evidence theory (ET), also
known as the Dempster-Shafer theory of evidence [98]. It has demonstrated particularly
significant success in uses requiring automatic logic, such as intelligent driving systems.
Evidential thinking differs fundamentally from fuzzy set theory and probabilistic techniques.
Let’s think about a global collection Ω of all potential hypotheses for an occurrence x. A
belief mass (likelihood of a proposition) may be assigned to any member of a∈Ω and, in fact,
to any subset A⊆Ω in probability theory or fuzzy set theory. Belief mass can be assigned to
sets of sets as well as components and sets in evidentiary reasoning. The power set 2Ω is the
domain of evidential reasoning, whereas the domain of probabilistic techniques is all potential
subgroups Ω. Dempster-Shafer’s approach, in a nutshell, seeks to measure levels of belief.
There are various types of inaccurate information, such as unclear or vague information, in the
area of intelligent car awareness. For instance, when an object is absent (occlusions), when a
sensor cannot measure all of the object’s pertinent characteristics (hardware constraints), or
when an observation is unclear (partial object detection). Uncertainty and ambiguity both
contribute to agents’ views and subjective judgments about the actual value of a relevant
variable [99].

Transferable Belief Model The Dempster-Shafer theory is interpreted by the Trans-
ferable Belief Model (TBM), which is built on the work in [100]. According to Shafer, this
model is a pure version of Dempster-Shafer’s model that does not include any references to
probability theory. Let the collection of all potential answers to an issue, where each of its
components is mutually exclusive, be the frame of discernment (or space of hypotheses) Ω.
A confidence function with the range [0,1] as the image and the power set 2Ω as the domain
can be used to quantify the information of the world that the agent Y possesses. The TBM
has the ability to expressly depict doubt regarding a Ω hypothesis. It reflects the belief for the
known hypotheses and takes into consideration what is still unknown. The real answer to the
issue corresponds to one of the elements of Ω, denoted ω , but the agent is unsure of which
element because of its imprecision. Regarding the possibility that a particular subgroup of Ω

contains ω , the agent can only offer his subjective view. Based on the information that was
accessible to Y at the time t, the belief bel(A) provided by Y to a subset A of Ω at that time
expresses how strongly the agent believes that ω is an element of A. A likelihood indicator is
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typically used to quantify the level of confidence. The Transferable Belief Model concerns
the same problem as the one considered by the Bayesian model except it does not rely on
probabilistic quantification but on belief functions [101].

The TBM is a two-level model. At the credal level, where the individual states the degree
to which he believes that ω pertains to particular subgroups of Ω, beliefs are defined by belief
functions. The information is combined, updated, and kept at this stage. When a choice
needs to be made, the pignistic level emerges, and the views held at the credal level pass on
the knowledge required for the pignistic level to make the best choices. When there are no
decisions to be made, this stage is idle. TBM posits that belief functions can quantify ideas
held at the credal level. The TBM postulates that the impact of a piece of evidence on an
agent is transformed by an allocation of parts of an initial unitary amount of belief among
the subsets of Ω. For A⊆Ω, m(A) is a part of the agent’s belief that supports A. The m(A)
values, A ∈Ω, are called the basic belief masses (bbm) and the m function (or mass function)
is called the basic belief assignment (BBA) and is defined as:

m(A)→ [0,1], with:

∑
A⊆Ω

m(A) = 1, m(⊘) = 0. (2.21)

Every A ∈Ω, such that m(A)> 0, is called a focal element (or proposition). The difference
with probability models is that masses can be given to any subsets of Ω instead of only to the
elements of Ω as it would be the case in probability theory. From Equation (2.21) it can be
noticed that a BBA may support a set A without supporting any of its subsets. This can be
seen as a partial knowledge capability. A can be any subset in 2Ω, but there are some cases
where the mass function m(A) has a specific meaning:

• If there is only one focal set, m(A) = 1 for some A ⊆ Ω, then m(A) becomes a
categorical mass function. And if A = Ω this represents the total ignorance.

• If all focal sets are singletons, m(A) > 0→ |A| = 1, m(A) could be considered a
Bayesian mass function.

The reason for it is called transferable belief model is the following: if there is new informa-
tion about ω ∈ B⊆Ω. Then, this results in an evidence transfer for each A⊆Ω of the bbm
m(A) initially allocated in A, to A∩B⊆Ω.

In the TBM, evidence reliability is a key idea. When an unreliable source provides the
evidence masses given in the BBA, those masses should be regarded as being inaccurate. By
weighing the bulk assignations, a discounting factor enables the introduction of this absence
of dependability. The original transfer of belief described in the TBM corresponds to the
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unnormalized rule of conditioning (or Dempster’s rule of conditioning). Let us assume that
conditioning evidence tells the agent Y that B⊆Ω is true. Then, we can transfer the original
BBA m into an updated BBA mB as per the following formula:

mB(A) = ∑
X⊆B

m(A∪X), A⊆ B,

mB(A) = 0, A ⊈ B, (2.22)

where m is a BBA on the frame of discernment Ω.
The degree of belief bel(A) of A ⊆ Ω quantifies the total amount of justified support

given to A. This can be obtained summing all the basic belief masses given to propositions
X ⊆ A, with X ̸=⊘:

bel : 2Ω→ [0,1],

bel(A) = ∑
⊘̸=X⊆A

m(X), (2.23)

which is evident as bel(A) includes evidence only given to specific subsets of A. The function
bel is called a belief function and satisfies the following inequalities as proposed in [100]:

A1,A2, . . . ,An ⊆ Ω

bel(A1∪A2∪ . . .An) ≥ ∑
i

bel(Ai)−∑
i> j

bel(Ai∩A j) · · ·− (−1)nbel(A1∩A2∩ . . .An),

∀n ≥ 1. (2.24)

A big lack in probability models is the ability to represent total ignorance as state of belief.
This state represents a problem in Bayesian theory when it has to be defined by probability
functions. In the TBM, total ignorance is represented by a vacuous belief function m(Ω) = 1,
so that bel(A) = 0,∀A⊆Ω,A ̸= Ω, and bel(Ω) = 1. All the subsets A ∈Ω receive the same
degree of belief (which is the state of total ignorance) and none of the are supported (except
for Ω itself). The degree of plausibility pl(A) of A⊆Ω quantifies the maximum amount of
potential support that could be given to A⊆Ω and it is obtained by adding all the basic belief
masses given to propositions X that are compatible with A (i.e. X ∩A ̸=⊘):

pl : 2Ω→ [0,1],

pl(A) = ∑
X∩A̸=⊘

m(X) = bel(Ω)−bel(Ā), (2.25)
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meaning that there are basic belief masses included in pl(A) that could be transferred to
non-empty subsets of A if some new information could justify that transfer, for instance, if
we know that Ā is impossible. The function pl is called plausibility function and it is an
alternative representation of the information represented by the belief function over the same
BBA:

pl(A) = bel(Ω)−bel(Ā) = ∑
A∩B̸=⊘

m(B). (2.26)

Fusion of evidence An important benefit of the evidential theory, which can be thought
of as an information fusing operation, is its capacity to combine multiple pieces of evidence
from various sources within the same framework of judgment. We can define two evidence
distributions m1 and m2 with elements from two different sources S1 and S2, respectively.
These two evidence bodies with focal elements X1,X2, . . . ,Xi and Y1,Y2, . . . ,Y j can be com-
bined into a new mass function m using the combination rule. Specifically, the product of m1

and m2 induced by the two bodies of evidence on the same frame of discernment Ω supports
X ∩Y . This rule provides a method to compute the orthogonal sum m = m1⊕m2 as follows:

m(A) =

∑
Xi∩Y j=A

m1(Xi)m2(Yj)

1−K
for A⊂Ω,

K = ∑
Xi∩Y j=⊘

m1(Xi)m2(Yi)

m(⊘) = 0, (2.27)

where K is the conflict factor (formerly a normalization factor) that measures the degree
of conflict evidence between the bodies of evidence m1 and m2. If the value of the conflict
factor is high, the conflict is strong between the sources; therefore, a combination would
make no sense.

The normalization factor in Equation (2.27) produces convergence toward the dominant
opinion between the bodies of evidence to be combined. Specifically, concordant items
of evidence (redundant evidence) reinforce each other by transferring mass in the null set
⊘ to the focal elements. However, when the bodies of evidence are not reliable or the
mass functions are imprecise, a conflict mass m(⊘) appears. Particularly, when there is a
considerable degree of conflict between the sources of evidence, the normalization process
inside (2.27) of combination can lead to counterintuitive results. For example, it can lead to
assign a high belief to a minority element when no agree is achieved between the evidence
sources. In [102] an alternative to Equation (2.27) to avoid counter-intuitive results when a
high conflict value is present in the evidence combination has been proposed. This alternative
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is a rule of combination that assigns the conflict mass from the null set ⊘ to the ignorance set
Ω, which means that the conflict value is distributed among all the elements of the frame of
discernment rather than only the elements with intersections of the combining masses. The
rule of combination proposed in [102] is defined as follows:

m(A) = ∑
Xi∩Y j=A

m1(Xi)m2(Yj) A ̸=⊘,A ̸= Ω,

m(Ω) = ∑
Xi∩Y j=Ω

m1(Xi)m2(Yj)+K

K = ∑
Xi∩Y j=⊘

m1(Xi)m2(Yi). (2.28)

Analysis of the evidence theory for robot perception The ability of ET to depict
insufficient proof, full ignorance, and the absence of a need for a priori odds is its first
benefit. The complete belief is attributed to ignorance before the process of gathering proof.
So when new proof is discovered, it takes the position of the old evidence in the ignorance.
Although implicit knowledge is embedded in the description of the framework of the frame
of discernment, ET does not necessitate a priori environmental information. Discounting
variables, such as sensor performance dependability, are a key method for incorporating
the credibility of the proof sources into the ET representation. Sensor fusion apps can
take advantage of the capacity of combination rules to combine data from various bodies
of evidence into a more trustworthy evidence distribution. The various ways that belief
functions are interpreted make it possible to choose the best decision-making instrument
for the intended purpose. Using the appropriate evidence representation, advanced phases
of intelligent robot systems, such as thinking and judgment, can incorporate evidence
distributions into the decision-making process. The representation and the synthesis of the
data are the two major drawbacks of ET. Due to the belief functions’ distribution of belief
to the 2Ω power set of all the hypotheses, ET is firstly less computationally tractable as the
number of hypotheses rises. However, the application area might permit making assumptions
to limit the collection of potential hypotheses by Ω. By using the right meaning of the frame
of discernment, this drawback might be surmounted. Second, the normalization process that
emerges from the divergent values among the masses of data produces unexpected outcomes.
However, ideas like the rule expressed in (2.28) circumvent this restriction by handling the
dispute rather than averaging the collected data.
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Deep learning approaches There are several deep learning techniques that can be applied
to robot multi-sensor fusion, based on artificial neural networks (ANN) and deep neural
network (DNN) architectures (see Figure 2.11 and Figure 2.10 for reference).

Input layer

Multiple hidden layers

Output layer

Fig. 2.10 Architecture of a Deep Neural Network.

Convolutional Neural Networks (CNNs) that are often used for visual perception tasks,
such as object recognition and detection, can be applied to data from cameras or other visual
sensors to perform multi-sensor fusion. The CNNs have been used to perform sensor fusion
in several applications: the authors in [103] proposed a solution for predicting occupancy
using multiple low-cost and low-resolution heat sensors, performing the data fusion and
processing via a Convolutional Neural Network for predicting occupancy. In [104], the
authors proposed a multi-sensor fusion approach based upon convolutional neural network
to integrate layer-wise images, acoustic emission signals, and photodiode signals for in-situ
quality monitoring of Selective Laser Melting (SLM). Specifically, the authors designed
three CNN-based multi-sensor fusion models from data-level fusion, feature-level fusion,
and decision-level fusion respectively and compared in quality identification.

Another approach to sensor fusion is using Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks. RNNs are useful for processing sequential
data, such as sensor readings over time. They can be applied to data from sensors that
provide time-series data, such as accelerometers, gyroscopes, or temperature sensors. LSTM
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networks are a type of RNN that can handle longer sequences of data and are often used
for time-series data. They can be applied to sensor data that changes over time, such as
positional data or environmental data. The authors in [105] proposed a combined graph
convolutional network (GCN) and long short-term memory (LSTM) algorithm to construct a
feature-level fusion model for sensor data. In the paper, the authors proposed a model that
uses GCN to extract features of multi-source heterogeneous data, which solving the problem
of difficult fusion of heterogeneous data caused by differences in data types, and LSTM for
feature extraction of time series, which solves the problem of gradient disappearance.

Input layer

Multiple hidden 
layers

Output layer

f(x) y=f(x)

Multi-sensor 
system

Multi-sensor 
data

Deep Neural Network data fusion
Synergy observation 

effect

Fig. 2.11 Diagram depicting a framework for multi-sensor fusion based on deep neural networks.

A further approach to sensor fusion with DNN is using autoencoders. Autoencoders are
used for unsupervised learning and can be used to learn representations of multi-modal data.
They can be applied to sensor data from different modalities, such as visual, auditory, and
tactile sensors. In [106], the authors proposed a multi-sensor fusion framework using a novel
autoencoder for semi-supervised learning. Specifically, both labeled and unlabeled data are
used for learning the latent representation from each sensor. Then, the latent representation
of all the sensors are combined to perform classification. A joint optimization formulation is
presented for learning the sensor-specific latent representation, their encoder and decoder
weights and the classification weights together. In [107], the authors presented a multi-sensor
data collection and data fusion procedure for nondestructive evaluation/testing (NDE) of
a concrete bridge deck. The authors trained a neural network autoencoder to quantify the
relationship between several NDE results using the data collected at common positions. This
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relationship was then used by the authors for fusion of NDE data to increase the reliability
and spatial resolution of the NDE measurements and to generate a data-fused condition map
showing novel characteristics.

Generative Adversarial Networks (GANs) can be used to generate synthetic data, which
can be used to augment existing sensor data. This can help to improve the robustness of
the system and make it more resistant to sensor failures or environmental changes. Even
if GANs are used especially to generate synthetic data, these networks can also be used to
solve multi-sensor fusion problem. In [108] the authors proposed a data driven approach to
multi-modal fusion, exploiting selected optimal features from an estimated latent space of
data across all modalities. The authors used a generative network conditioned on individual
sensor modalities to learn the hidden space. The hidden space, as an intrinsic structure,
has been exploited in detecting damaged sensors, and in subsequently safeguarding the
performance of the fused sensor system.

These deep learning techniques can be used to fuse data from multiple sensors to create a
more accurate and comprehensive representation of the robot’s environment, enabling the
robot to make more informed decisions and navigate effectively.

Requirements of multi-sensor systems

We discussed the issue with single-sensor perception systems in the earlier parts, as well as
the possibility of incorporating multiple sensors into the perception job. We need to suggest
and put into practice a number of components in order to create a multi-sensor system. First,
sensor data processing gets the raw data from instruments and turns it into usable information
by using sensor-based models. The quantity and type of sensors placed on the demonstrator
determine how raw data processing units are configured. After that, SLAM modules use the
data that has been analyzed to make a plan and carry out localization. At this point, these
components might need to perform data fusion.

The most crucial specifications for a multi-sensor system for independent robots are
summarized here:

• Sensor Diversity: The system should have sensors that can sense different types of data,
such as visual, auditory, or tactile. This diversity helps to provide a more complete
understanding of the robot’s environment.

• Redundancy: The system should have multiple sensors that can sense the same type
of data, such as multiple cameras or multiple microphones. This redundancy helps to
ensure that the robot can still function even if one or more sensors fail.
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• Accuracy: The sensors should be accurate enough to provide precise data that the robot
can use to navigate and make decisions.

• Reliability: The sensors should be reliable enough to provide consistent data over time,
even in challenging environments.

• Low Latency: The sensors should be able to provide data quickly enough for the robot
to make real-time decisions.

• Integration: The sensors should be integrated with the robot’s control system to enable
the robot to use the data to make decisions and take actions.

• Power Efficiency: The sensors should be designed to consume as little power as
possible, to prolong the robot’s battery life.

• Scalability: The system should be scalable, so that additional sensors can be added or
removed as needed, depending on the robot’s specific task and environment.

Overall, a multi-sensor system for autonomous robots should be designed to provide a robust,
reliable, and accurate perception of the robot’s environment, enabling the robot to make
informed decisions and navigate effectively.

2.2 Resilience in robot perception

Robots have become an integral part of our daily lives, from manufacturing and assembly
lines to homes and healthcare. As robots become more ubiquitous, their perception of the
environment and ability to adapt to changing conditions become critical factors for their
success. Resilient robot perception is the ability of a robot to accurately perceive and interpret
its environment facing uncertainty, noise, and adversarial conditions. This requires advanced
sensing technologies, robust algorithms, and intelligent decision-making systems that can
adapt to changing environmental conditions. In this section, we will explore the challenges
of robot perception and the strategies and techniques for building resilient perception systems
that can operate in real-world scenarios. We will discuss the latest research and advancements
in the field, presenting robot perception architectures, multi-modal perception and the outlier
detection on the measurements to achieve resilience. Finally, we will examine the potential
applications of resilient robot perception in various domains, including autonomous robots.
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2.2.1 Robot perception architecture

Many contemporary multi-sensor fusion techniques are based on the fusion ideas discussed
in earlier sections. These ideas are being put into practice at various phases of the robot
perception system. In order to explain the various state-of-the-art techniques linked to our
efforts from a different angle, we adhere to the basic design for a robot perception architecture
suggested in [42]. The two fusion stages that we take into account within a perceptual system
are shown in Figure 2.12:

• Low level. Each sensor’s raw data is converted into a shared representation, which is
then fused into a representation that is used to create the image.

• Map level. The produced maps are merged to create a fused map after SLAM is solved
for each sensor output.

Within the SLAM component, low level and map level fusions are carried out. As previously
mentioned, perception is predicated on the notion that numerous sensors can provide duplicate
information (i.e., overlapping field of views) as well as complimentary information (for
example, LiDAR, UWB, UHF-RFID, and camera sensor). The processes of sensor setup
and selection are closely linked to the use of intelligent robots. As a result, the suggested
multi-sensor fusion techniques from the state-of-the-art have a wide range of sensor setups.
We concentrated on techniques that use camera and range sensors in order to target the
connected works. This choice is made based on the sensor configuration we employ to
evaluate our suggested multi-sensor fusing methods.

Preprocessing SLAM
Environment 

Model

Map LevelLow Level

Array of Sensors

Fig. 2.12 Fusion levels for robot perception architecture.

2.2.2 Multi-modal perception

The robot ability to perceive the world around them is still limited. Single-mode sensors
like cameras or LIDAR are useful, but they have limitations. Multi-modal perception is
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an approach that combines data from multiple sensors and information sources to improve
the accuracy and reliability of robot perception. This section will explore the benefits and
challenges of multi-modal perception, as well as techniques for integrating data from different
sources.

Multi-modal perception has several advantages over single-mode sensors. By using mul-
tiple sensors, robots can capture more comprehensive information about their environment,
including visual, auditory, and tactile cues. This additional information can help robots
make better decisions, especially in situations where a single sensor may be insufficient,
such as low-light conditions, noisy environments, or occlusions. Additionally, multi-modal
perception can help robots interpret the environment more accurately by combining data
from different sources and providing redundancy in case one sensor fails.

While multi-modal perception has significant benefits, it also presents several challenges.
One of the most significant challenges is how to integrate data from different sources
effectively. The data from different sensors may be in different formats or have different
levels of uncertainty, making it challenging to combine them effectively. Additionally, the
data from different sensors may arrive at different times, which can complicate the integration
process further.

There are several techniques for multi-modal perception, including sensor fusion, machine
learning, and Bayesian inference. Sensor fusion is a process of combining data from multiple
sensors to obtain a more comprehensive understanding of the environment as presented in
Section 2.1.6. Machine learning approaches can be used to learn how to combine data from
different sources effectively, especially when the data from different sensors are in different
formats as reported in Section 2.1.6. Finally, Bayesian inference is a statistical approach that
can be used to integrate uncertain data from multiple sources.

Multi-modal perception has several potential applications, including autonomous robots,
healthcare, and manufacturing. In autonomous robots, multi-modal perception can help
robots navigate safely in challenging conditions, such as low-light or inclement weather.
In healthcare, robots with multi-modal perception can assist in surgery or rehabilitation,
providing more accurate and precise feedback to surgeons or patients. In manufacturing,
multi-modal perception can help robots perform more complex tasks, such as assembling
products or inspecting parts.

Multi-modal perception is a powerful approach to improve the accuracy and reliability
of robot perception. By combining data from multiple sensors and information sources,
robots can better understand and interpret their environment, even in challenging conditions.
While multi-modal perception presents several challenges, there are several techniques and
approaches that can be used to overcome them. In [109], the authors developed a graphical
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model for fusing object recognition results using two different modalities–computer vision
and verbal descriptions. In this work, the authors focused on three types of verbal descriptions,
egocentric positions, relative positions using a landmark, and numeric constraints. Visual
and verbal modalities have been fused using a Conditional Random Fields (CRF) based
approach, modelling n-ary relations (or descriptions) as factor functions. Furthermore, in the
context of service robotics, the authors in [110] proposed a multi-modal perception based
framework to realize non-intrusive domestic assistive robotic system. All the robot’s actions
are based on multi-modal perceptions which include user detection based on RGB-D data,
user’s intention-for-interaction detection with RGB-D and audio data, and communication
via user distance mediated speech recognition. Finally, the authors in [111] presented an
active fusion framework for the multi-modal material recognition. The authors adopted
an adversarial learning method to obtain the modal-invariant representations to bridge the
gap between different modalities, and then they developed a reinforcement learning method
for active modality selection. The developed framework and algorithms showed promising
material recognition results.

2.2.3 Outlier detection

Outlier detection in sensor measurements is a critical aspect of achieving resilience in robotic
systems [112]. In the context of robotic systems, outliers in sensor measurements can arise
due to a variety of reasons, such as noise, environmental conditions, or sensor malfunctions.
Outlier detection is the process of identifying and removing or correcting these outlier data
points to ensure accurate and reliable measurements. An outlier is a data point that is
significantly different from other data points in the same set. Figure 2.13 shows outliers
in a simple 2-D data set. The data has two normal regions, N1 and N2. O1 and O2 are two
outlying instances while O3 is an outlying region. The outlier instances are the ones that do
not lie within the normal regions. Outliers exist in almost every real dataset. Some of the
most important causes for outliers are:

• Malicious activity - such as insurance or credit card or telecommunication fraud, a
cyber intrusion, a terrorist activity

• Instrumentation error - such as defects in components of machines or wear and tear

• Change in the environment - such as a climate change, a new buying pattern among
consumers, mutation in genes

• Human error - such as an automobile accident or a data reporting error.



2.2 Resilience in robot perception 51

N1

x

y

O3

O2

O1

N2

Fig. 2.13 Example of outliers in a 2-D dataset.

There are many ways that outliers can be introduced into the data, but they all share the trait
of being intriguing to the researcher. Outlier identification differs from noise removal [113]
and noise accommodation [114], which address unwelcome disturbance in the data, in part
because of the significance of outliers. Data noise is an obstacle to data analysis because it
lacks actual importance on its own. Before performing any data analysis on the data, it is
necessary to eliminate any undesirable objects, which is what motivates noise removal. The
term noise accommodation describes the process of protecting a statistical model’s prediction
from anomalous data. Novelty detection ([115], [116] and [117]) is a subject linked to outlier
detection that seeks to find previously unnoticed (emergent, novel) trends in the data. Novel
patterns differ from outliers in that they are usually integrated into the standard model after
being discovered.

One of the main benefits of outlier detection is improved accuracy in robotic systems.
Inaccurate sensor measurements can result in incorrect or unexpected behavior by robots,
which can be dangerous in particular situations. For example, if a robot is equipped with a
faulty sensor that reports incorrect distance measurements, it could collide with obstacles or
other objects, causing damage or injury. Outlier detection can help identify and correct these
types of errors, resulting in more accurate measurements and more reliable robot behavior.

Outlier detection can also improve the resilience of robotic systems. Robotic systems
often operate in dynamic and unpredictable environments, where unexpected events can
occur, such as sudden changes in lighting conditions or the presence of unexpected obstacles.
In these situations, outlier detection can help robots adapt to changes in their environment by
detecting and correcting abnormal sensor measurements. By detecting and correcting outliers,
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robotic systems can improve their resilience and continue to operate effectively in changing
conditions. There are several techniques for outlier detection in sensor measurements,
including statistical methods, machine learning algorithms, and rule-based approaches.
Statistical methods involve analyzing the distribution of sensor measurements to identify
outliers. Machine learning algorithms can learn to detect outliers by training on large datasets
of sensor measurements. Rule-based approaches use a set of predefined rules to identify and
correct outliers.

This section identifies and discusses the different aspects of outlier detection. As men-
tioned earlier, a specific formulation of the problem is determined by several different factors
such as the input data, the availability (or unavailability) of other resources as well as the
constraints and requirements induced by the application domain. This section brings forth
the richness in the problem domain and motivates the need for so many diverse techniques.

Input Data

The raw data that an outlier identification method must use to find outliers is a crucial element.
According to the author in [118], the input is typically viewed as a group of data objects
or data instances (also known as records, points, vectors, patterns, events, cases, samples,
observations, or entities). A collection of characteristics can be used to characterize each
data instance (also referred to as variable, characteristic, feature, field, or dimension). The
data examples may be binary, classified, or continuous in nature. One trait (uni-variate) or
several characteristics could be present in each data instance. (multi-variate). All variables
in multi-variate data instances may be of the same type or may be a combination of various
data types. One crucial finding is that the features used by any outlier identification method
do not always relate to the features that can be seen in the provided data collection. In
order to work with a set of features that are most likely to distinguish between the typical
and outlier behaviors in the data, several techniques employ pre-processing techniques like
feature extraction [119], or construct more complex features from the observed features [120].
Finding the best collection of features that will enable the algorithm to produce the best
results in terms of precision and computational speed is a crucial challenge for any outlier
identification method. On the basis of the structure existing among the data instances,
input data can also be classified. The majority of the outlier identification methods in use
today work with data where no presumed structure exists among the data instances. These
statistics are referred to as point data. Additionally, data may be structured in a geographic,
linear, or combined manner. For sequential data, each data instance has a specified ordering
that ensures it appears in the complete data collection progressively. The most common
illustration for this situation is time-series data, which has undergone intensive statistical
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analysis with regard to outlier detection (see [121] and [122]). For spatial data, the data
instances have a clearly defined spatial framework, making it important to know where one
data instance is in relation to another.

Type of supervision

An outlier identification program may also have access to some extra data in addition to the
raw data (or observations). One such piece of information that has been widely utilized is an
annotated training data collection (primarily by outlier detection techniques based on concepts
from machine learning [123] and statistical learning theory [124]). Techniques that entail
creating a clear predictive model need a training data collection. A data instance’s identifiers
indicate whether it is a normal or outlier instance. Three types of outlier identification
methods can be made based on how much these identifiers are used.

Supervised outlier detection techniques Such methods presuppose the existence of a
training data collection with annotated examples for both the normal and outlier classes. In
such a situation, the typical strategy is to create predictive models for both the standard and
outlier groups. The class to which any unknown data instance corresponds is determined by
comparison to the two models. Accurate models can be created because supervised outlier
identification methods explicitly distinguish between typical and outlier behavior. This has
the disadvantage that labeled training data may be extremely costly to acquire. Obtaining
the labeled training data collection takes a lot of work because labeling is frequently done
mechanically by a human expert. To create a completely annotated training data set, some
methods artificially introduce outliers into a normal data set. They then use supervised outlier
detection techniques to find outliers in test data [125].

Semi-Supervised outlier detection techniques Such methods presuppose the existence of
named examples for just one class. The collection of identifiers for other groups is frequently
challenging. Such techniques typically take the strategy of modeling only the classes that
are currently accessible and designating any test instance that does not match this model as
belonging to the other class. Techniques that presuppose that only the aberrant cases are
available for training are not very common. Their low level of adoption is primarily due to the
difficulty in obtaining a training data collection that includes all potential aberrant behaviors
that might appear in the data. It will be more difficult to spot anomalies in behaviors that
don’t appear in the training data. For training, the authors in [126] and in [127] have only
used anomalous cases. On the other hand, methods that only simulate typical cases during
instruction are more widely used. Normal cases are fairly simple to find. It is also simpler to
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build sample models for normal behavior from the training data because normal behavior is
usually well-defined. This environment is frequently used in harm and defect detection and
is very close to novelty detection methods for unsupervised outlier identification (see [115]
and [116]).

Unsupervised outlier detection techniques The third group of methods does not rely
on the existence of labeled training data in any way. These methods are therefore the most
broadly useful. Other suppositions about the data are made by the methods in this group.
For instance, parametric statistical methods rely on the assumption that one or both groups
of instances have a parametric distribution. Similar to this, many methods start from the
premise that typical occurrences occur much more frequently than anomalies. Thus, a
pattern that appears frequently is usually regarded as normal, whereas an uncommon event
is an outlier. The false alert rate for unsupervised methods is usually greater because the
underlying assumptions are frequently incorrect. The aforementioned decision of working
modes for any method is governed by label availability. Unsupervised and semi-supervised
recognition techniques have typically been used more. Techniques that presume the existence
of outlier cases during training are generally not very well-liked. One of the reasons is that it
is challenging to obtain a labeled collection of outlying data examples that includes every
conceivable kind of outlying behavior. Additionally, the outlying behavior is frequently
dynamic in nature (e.g. new types of outliers might arise, for which there is no labeled
training data).

Type of outliers

Outliers can be classified into three categories based on their composition and their relation
to rest of the data.

Type I Outliers In a given set of data instances, an individual outlying instance is named
a Type I outlier. This is the simplest type of outliers and is the focus of majority of existing
outlier detection schemes. A data instance is an outlier due to its attribute values which are
inconsistent with values taken by normal instances. Techniques that detect Type I outliers
analyze the relation of an individual instance with respect to rest of the data instances (either
in the training data or in the test data). For instance, in credit card fraud detection, each data
instance typically represents a credit card transaction. We can assume that the data is defined
using only two features time of the day and amount, for simplicity. Figure 2.14 shows a
sample plot of the 2D data instances. The curved surface represents the normal region for the
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data instances. The three transactions, O1, O2 and O3 lie outside the boundary of the normal
regions and hence are Type I outliers.
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Fig. 2.14 Type I outliers O1, O2 and O3 in a 2D credit card transaction dataset. The normal
transactions for this data are typically during the day, between 11:00 and 18:00 and range between
10C to 100C. The outliers O1, O2 and O3 could be fraudulent transactions which are outliers because
they occur at an abnormal time and the amount is abnormally large.

Type II Outliers These outliers are brought about by the appearance of a single data
instance in a particular setting in the provided data. These outliers are distinct data examples,
just like Type I outliers. A Type II outlier may not be an outlier in a different setting,
which is the distinction. Consequently, Type II outliers are described in relation to a
situation. The dataset’s structure infers the concept of a context, which must be stated as part
of the issue formulation. A context identifies a data instance’s immediate surroundings.

Type II outliers meet two requirements.

• The underlying data is spatial/sequential in character. Contextual and behavioral traits
are used to describe each occurrence of the data. The context (or area) of an instance
is established using the contextual characteristics, which also describe the location
of the instance. The longitude and latitude of a place, for instance, are contextual
characteristics in geographic data collections. Alternatively, in a time-series data, time
is a contextual characteristic that establishes a particular instance’s location within the
complete timeline. The non-contextual traits of an entity are defined by the behavioral
attributes. The quantity of rainfall at any place, for instance, is a behavioral attribute in
a spatial data collection that describes the global average for precipitation.
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• The numbers for the behavioral characteristics in a particular situation are used to
identify the outlying behavior. In one setting, a data instance might be a Type II out-
lier, whereas in another, the same data instance (in terms of behavioral characteristics)
might be regarded as normal.

One such illustration of a temperature time series, depicted in Figure 2.15, shows the region’s
average monthly temperature over the previous few years. In that location, a temperature
of −5 ◦C during the winter (at time t1) might be considered typical, but the same number
during the summer (at time t2) would be abnormal.
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Fig. 2.15 Type II outlier t2 in a temperature time-series. The temperature at time t1 is same as that at
time t2 but occurs in a different context and thus is not considered as an outlier.

Type III Outliers These outliers arise from the fact that a portion of the data examples are
anomalous relative to the complete data collection. The individual data examples in a Type
III outlier are not outliers by themselves, but their appearance together as a substructure is
anomalous. Only when the data has a spatial or sequential character do Type III outliers
have any significance. These outliers are either anomalous sub-graphs or sub-sequences that
occurs in the data. An illustration of a human ECG output (see [128] for further information)
is shown in Figure 2.16. Note that the extended flat line indicates an outlier because the
same low value persists for an unusually long period. For sequential data, such as operating
system call data and genome sequences, the Type III outlier identification issue has been
extensively studied. A specific series of operating system calls is regarded as an outlier
when analyzing system call statistics. Similarly, outlier identification methods working with
images identify areas in the image which are anomalous (Type III outliers). It should be
mentioned that Type I outliers can be detected in any form of data. Sequential or spatial
structure in the data is necessary for Type II and Type III outliers to be detected.
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Fig. 2.16 Type III outlier in an human electrocardiogram output. The low value in the flat-line also
occurs in normal regions of the sequence.

Output of outlier detection

The structure of the outlying patterns identified by the method must meet requirements
imposed by the nature of outliers described above. Another prerequisite for any outlier
detection method is the way in which the outliers are revealed. Outlier detection methods
typically fall into one of the two categories listed below.

Labeling techniques Each test case is given a designation (normal or outlier) by the
methods in this group. They act in this way as a categorization system would. The method
produces a set of outliers and a set of typical instances when the test input is a set of instances.
Such methods have the advantage of giving researchers a precise collection of outliers. These
methods have the flaw of not distinguishing between various outliers; no rating of the outliers
is given. A zero-one choice is impossible in situations where there is a high degree of
certainty that a trend is an outlier. This drives the demand for the scoring-related methods
that are covered below.

Scoring techniques Depending on how much a pattern is thought to be an outlier, these
methods give it an outlier number. Thus, an ordered collection of outliers is the result of
such methods. An researcher can pick the outliers using a cut-off threshold or study the top
few outliers. The option of the threshold to pick a group of outliers is the disadvantage of a
ranked list of outliers. Choosing this level is frequently difficult and must be done at random.
The application area can also set restrictions, such as the intended level of precision and
processing speed, in addition to describing the nature of the data and outliers. In domains such
as safety-critical systems, the accuracy of the algorithm is a foremost requirement. However,
scalable and efficient methods are essential for online systems like network intruder detection
systems. The methods frequently need to strike a compromise between the aspects of the
answer that depend on accuracy and efficiency. Outlier identification algorithms must handle
this issue as privacy protection of data has recently grown to be a significant restriction in a
number of areas [129].
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2.3 Sensor data generation

Sensor data generation is a critical aspect of resilient robot perception, where accurate and
reliable sensor data is essential for robots to perform their intended tasks. In this section we
provide an overview, analyzing traditional techniques and deep learning-based methodologies
to generate synthetic sensor data.

In traditional techniques, sensor data is generated by using various hardware sensors,
such as cameras, LiDAR, and ultrasonic sensors, to capture the environment’s information.
This data is then processed using classical signal processing techniques, such as filtering
and feature extraction, to extract relevant information for the robot’s perception. However,
gathering sensor data requires hardware (i.e. sensors) and it is time consuming. For that
reason, methodologies to generate synthetic sensor data are useful to overcome these prob-
lems. Generating synthetic sensor data without using hardware, with traditional techniques,
involves creating virtual environments and simulating sensor readings based on the physics of
the simulated world. However, these techniques require accurate simulation models and may
not capture all the complexities and nuances of the real-world environment. However, with
recent advancements in deep learning methodologies, there has been a growing interest in
using deep neural networks to generate sensor data for robots. Deep learning techniques, such
as generative adversarial networks (GANs), can be used to learn the underlying distribution
of the sensor data and generate synthetic data that is similar to the real-world data. This
can be particularly useful in scenarios where obtaining large amounts of real-world sensor
data may be impractical or too costly. The use of deep learning techniques for sensor data
generation has the potential to significantly improve the robustness and reliability of robot
perception, especially in challenging and dynamic environments. By generating synthetic
data, robots can be trained to handle a wide range of scenarios and adapt to new situations
quickly. Furthermore, deep learning-based sensor data generation techniques can also help
to improve the generalization and transferability of robot perception models, making them
more applicable to real-world scenarios.

Overall, the use of classical techniques and deep learning methodologies for sensor data
generation can play a crucial role in developing resilient robot perception systems that can
operate effectively in various real-world environments.

2.3.1 Traditional techniques for sensor data generation

By building virtual settings and modeling sensor measurements based on the physics of
the simulated world, synthetic sensor data can be generated without the use of hardware.
Classical methodologies for sensor data generation have been presented in [130], where
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sensor models have been improved to generate synthetic data. We can mention some examples
of traditional techniques used to generate synthetic sensor data:

• Physics-based simulation: involves simulating the physics of the environment, includ-
ing the behavior of objects, lighting, and sound. This technique can be used to generate
synthetic sensor data for tasks such as object detection, tracking, and navigation. For
example, a physics-based simulation can be used to generate synthetic camera images
of an environment and simulate the behavior of objects in that environment.

• Computer graphics: these techniques can be used to create virtual environments and
objects, which can be rendered to generate synthetic sensor data. This technique can
be used to generate synthetic camera images, LiDAR point clouds, and other types
of sensor data. For example, a computer graphics technique called ray tracing can be
used to generate synthetic camera images that are physically accurate and realistic.

• Procedural generation: this technique involves generating content algorithmically
rather than using pre-made assets. This technique can be used to generate synthetic
sensor data for tasks such as object detection, tracking, and navigation. For example,
procedural generation can be used to generate synthetic LiDAR point clouds that
simulate the environment’s geometry and objects or range measurements from UWB
or UHF-RFID.

Overall, generating synthetic sensor data without using hardware can be a cost-effective
and scalable approach for training machine learning models for robotic tasks. These methods
might not fully convey the intricacies and nuances of the real-world environment because
they depend on correct simulation models.

2.3.2 Deep learning methodologies for sensor data generation

Deep learning techniques have been increasingly used to generate synthetic sensor data
without using hardware. These techniques involve training deep neural networks to generate
synthetic sensor data based on a learned model of the real-world environment. Among the
deep learning techniques used to generate synthetic sensor data, the following should be
mentioned:

• Generative Adversarial Networks (GANs): GANs are a type of deep neural network
that can generate realistic synthetic data by training a generator network to produce
synthetic samples and a discriminator network to differentiate between the synthetic
and real-world data. This technique can be used to generate synthetic camera images,
LiDAR point clouds, and other types of sensor data.
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• Variational Autoencoders (VAEs): VAEs are another type of deep neural network
that can generate synthetic data by learning a low-dimensional representation of the
real-world data and then generating new data points based on that representation. This
technique can be used to generate synthetic camera images, LiDAR point clouds, and
other types of sensor data.

• Deep Reinforcement Learning: Deep reinforcement learning techniques can be used
to generate synthetic sensor data by training an agent to interact with a simulated
environment and generate sensor readings based on the agent’s actions. This technique
can be used to generate synthetic sensor data for tasks such as navigation and obstacle
avoidance.

Deep learning techniques have been exploited for sensor data processing (as in [131]
and [132]) and, in the field of sensor data generation, several studies have explored the use
of generative models to generate synthetic data that closely resembles real-world sensor
data as in [133], [134] and [135]. Furthermore, deep generative models have been studied
in [136], [137] and [138] and gave the basis for a new approach to data generation. Deep
generation has been exploited in several applications: noise processing [139], image process-
ing [140], generative modeling of images [141], finance [142], dialogue generation [143]
and biomedical applications [144]. In the field of sensor data generation, other studies have
explored the use of recurrent neural networks (RNNs) for time-series data generation [145],
as well as the combination of multiple deep learning models for generating data from multiple
sensors using, for example, Generative Adversarial Networks (GANs) as in [146]. In the
context of robotics and autonomous systems, deep learning techniques such as Convolutional
Neural Networks (CNNs) have been used for 3D localization of RFID antennas [147] and
to detect obstacles with Ultra Wide Band (UWB) with Long Short-Term Memory Neural
Networks such as in [148]. In this work, we focused on two specific typologies of sensors:
UWB that are widely used in robotics for localization and mapping tasks as in [8] and
UHF-RFID that have been used in autonomous systems for Simultaneous Localization And
Mapping (SLAM) tasks as in [7].

Finally, in [149] Gartner predicted by 2030 most of the data used in AI (and this will
include also robotics) will be artificially generated by rules, statistical models, simulations
or other techniques as it is depicted in Figure 2.17. Overall, deep learning techniques for
generating synthetic sensor data without using hardware have the potential to improve the
scalability and flexibility of robotic perception systems. However, these techniques require
large amounts of real-world sensor data to train the deep neural networks effectively, and the
synthetic data may not fully capture the complexity of the real-world environment if the deep
neural networks are not trained properly on large amounts of data.
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Fig. 2.17 Synthetic data will become the main form of data used in AI, according to Gartner.

2.4 Summary

We have discussed the problems related to resilient robot perception in this chapter. We
examined localization, SLAM, VSLAM, and multi-sensor integration as answers to internal
issues. Since we are proposing a solution for intelligent robot systems, we focus on the
resilient robot perception. Following the findings of the reviewed works, we made the
decision to share our research on robot perception resilience using conventional and deep
learning methods. We discussed connected research projects based on the common fusion
methods used to merge data from various sources. In order to support our choice to select
Kalman filters and deep learning techniques as viable alternatives for our application, the
benefits and drawbacks of the fusion methods were examined. Its ability to depict incomplete
evidence, handle dispute, incorporate reliability, and account for ambiguity from the evidence
sources are some of its benefits. In addition to considering fusion methods, the study of
cutting-edge works also took into account related works based on the degree at which
fusion is carried out. We were able to concentrate on the end applications of the fusion
methods and discuss their shortcomings while emphasizing the viewpoints that led to the
suggested perception approaches thanks to this alternative revision of the state-of-the-art.
One improvement focuses on reducing false positives (outliers), while the other improvement
focuses on integrating robustness (resilience) at the sensor fusion level. Information fusion
methods within the perception component seek the development of the outcome of the
perception task. We describe our multi-sensor fusion contributions in connection to resilience
characteristics in the subsequent chapters. We will also go into depth about how the various
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modules of the suggested fusion strategy have been implemented. The fusion method will be
used in the experimental findings to demonstrate their effectiveness.



Chapter 3

Methodology Overview

The main topics of this chapter are an overview of the designed resilient perception subsystem,
the agent, robot and sensor configuration, the multi-sensor fusion proposed architectures
and the techniques to generate synthetic sensor data. The sensors presented in this chapter
represent the measurement sources of the proposed perception and multi-sensor fusion
architectures that will be detailed in Chapter 4 and whose applications will be presented in
Chapter 5. The set of sensor configurations are deployed in real autonomous robot contexts.
In this chapter we present an overview of the methodology focusing on building a resilient
perception architecture. This overview gives the general picture of the goals and requirements
of a real resilient perception system helping us to visualise the inputs and outputs of our
proposed architecture. In this chapter we also discuss about the importance of synthetic
sensor data generation, proposing methodologies to generate real-world sensor data through
the use of cutting-edge deep neural network technologies.

Sensor data processing is the first step in every perception system. It involves the sensor
configuration, data gathering and data processing. In this chapter, we also present the sensor
processing techniques we use to extract useful information from the environment. These
techniques focus on the early stages of the perception problem that are usually part of the
localization and SLAM components. We will then use the representations and data processing
methods presented here to solve localization and SLAM problems within a multi-sensor
fusion architecture. In this chapter we also show innovative solutions to localization and
SLAM taking into account the possibility of sensor errors/faults or sensor degradation and we
will introduce a resilient engine to cope with this kind of problems. We apply state-of-the-art
approaches to build localization and SLAM solutions extracting data from several different
sensors: cameras, odometry, UWB and UHF-RFID. We will also show that the presented
approach can be applied to any range sensor without much effort. The data processing
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methods presented in this chapter are common to our multi-sensor fusion approach and are
also used in the perception system implementation detailed in Chapter 4.

3.1 Agent, robot and sensor configuration

In this section we introduce the basics to characterize the autonomous systems that we will be
using in the methodology description. Specifically, we are referring to agent (Section 3.1.1),
robot (Section 3.1.2) and sensor configuration (Section 3.1.3).

3.1.1 Agent

In robotics, an agent refers to an autonomous entity that is capable of perceiving its environ-
ment through sensors and acting upon it through effectors. An agent can be any physical
or virtual system that is capable of processing sensor inputs and making decisions based
on that information. Agents are designed to operate independently and adapt to changing
environments by using sensors to gather information about their surroundings and effectors
to take actions that modify the environment or their own state. The behavior of an agent
can be modeled using a range of techniques, such as decision trees, rule-based systems,
neural networks, or reinforcement learning. Agents can be classified based on their level of
autonomy, where a fully autonomous agent is capable of operating independently without
human intervention, while a semi-autonomous agent requires some level of human input or
supervision. Additionally, agents can be classified based on their functionality, such as a
cleaning robot or a security robot. Agents are widely used in various robotics applications,
such as industrial automation, autonomous vehicles, and service robots. They are also used in
many fields outside of robotics, such as artificial intelligence and computer science, to model
and simulate complex systems. The agent is, then, an autonomous entity that is capable of
perceiving its environment through sensors and acting upon it through effectors, making
decisions based on sensor inputs and adapting to changing environments.

In order to characterize the agent to be deployed within the proposed methodology (in
2D), we define it as a dynamic system able to carry multiple sensors. We can then define the
agent pose at time t as follows:

pt =

 xa,t

ya,t

θt

 , (3.1)

with (xa,t ,ya,t) being the agent position and θt its orientation as depicted in Figure 3.1. The
agent is able to move on the plane and we suppose that there is no a priori knowledge of its
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Fig. 3.1 Representation of the agent pose.

dynamics. We made this assumption to let the agent dynamics be as generic as possible. If we
suppose to have an odometry system (e.g. visual odometry, see Section 3.1.3 for reference)
able to provide the displacements of the agent over time (discretized), expressed as:

∆k =

 δ o
x,k

δ o
y,k

δ o
θ ,k

 , (3.2)

we can write the discrete time dynamics of the agent as follows:

pk+1 =

 xa,k+1

ya,k+1

θk+1

=

 xa,k +δ o
x,k

ya,k +δ o
y,k

θk +δ o
θ ,k

 . (3.3)

As stated previously, the agent discrete time dynamics described in Equation (3.3) is referred
to the 2D case, however it can be easily extended to 3D. Also, the same equation expresses a
generic dynamics and it is not bound to any physical constraint of the agent (i.e. it can be a
robot, a human, a vehicle, etc.).
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3.1.2 Mobile robot

A mobile robot is a type of robot that is designed to move around and operate in different
environments, both indoor and outdoor. Unlike stationary robots that are fixed in one position,
mobile robots have the ability to move and navigate through space, typically by using wheels,
tracks, legs, or other means of locomotion. Mobile robots can be controlled by a human
operator, or they can be programmed to operate autonomously, using sensors to detect and
avoid obstacles, and GPS or other localization systems to determine their location. Some
examples of mobile robots include autonomous cars, delivery robots, drones, and humanoid
robots. Mobile robots have a wide range of applications, including manufacturing, logistics,
transportation, agriculture, exploration, and search and rescue. They offer numerous benefits,
such as increased efficiency, safety, and precision, and are becoming increasingly common in
a variety of industries. In this section we characterize the mobile robot moving on a plane,

Fig. 3.2 Unicycle-like mobile robot.

from the point of view of its dynamics. Specifically, in order to describe our methodology,
we focus on a unicycle-like robot with a differential drive kinematics which operates in an
indoor environment (as the one depicted in Figure 3.2). Similarly to the agent pose, described
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in the Equation (3.1), we can define the robot pose as follows:

pt =

 xr,t

yr,t

θt

 , (3.4)

with (xr,t ,yr,t) being the robot position and θt the robot orientation. Then, we can write the
discrete time dynamics of the robot as:

pk+1 =

 xr,k+1

yr,k+1

θk+1

=

 xr,k +uk cos(θk)

yr,k +uk sin(θk)

θk +wk

 , (3.5)

with uk and wk being the translation and rotational components of the displacement.

3.1.3 Sensor configuration

One of the most critical components of a robot is its ability to sense its environment and
react accordingly. This is where sensors come in. Sensors are devices that measure physical
quantities and convert them into electrical signals that can be processed by a robot’s control
system. In this section, we will explore the various types of sensors that can be used
to configure a robot for different applications and that have been selected to develop our
methodology. The selection of the right sensor type and configuration is critical in achieving
the robot’s desired performance. We will cover different sensor types: proprioceptive sensors
such as odometry and visual odometry and exteroceptive sensors such as range sensors and
vision sensors. Additionally, we will discuss how to mount and interface these sensors with
the robot control system. Overall, this section aims to provide a comprehensive understanding
of sensor configuration for mobile robots, specifically to build our methodology.

Proprioceptive sensors

A proprioceptive sensor is a type of sensor that measures the internal state of a robot, such
as its position, orientation, and velocity, by detecting the changes in the robot’s own body.
This type of sensor allows the robot to sense its own movements and adjust its actions
accordingly. Proprioceptive sensors can include rotary encoders, which measure the angular
displacement and speed of a joint, and accelerometers, which measure the acceleration and
tilt of the robot’s body. In addition, gyroscopes can be used to measure the angular velocity
of the robot. These sensors are commonly used in robotic applications such as motion
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control, navigation, and robot localization. Proprioceptive sensors are essential in enabling
a robot to move accurately and safely, without relying on external references such as GPS
or markers. By using proprioceptive sensors, a robot can continuously adjust its position
and orientation to achieve its desired motion, making it a valuable tool for a wide range of
robotic applications.

In this section, we focus on two typologies of proprioceptive sensors: encoders and visual
odometry.

Fig. 3.3 An encoder RS PRO, 500 PPR (pulse per revolution), with 10 mm diameter of the shaft.

Encoders An encoder is a sensor that measures the rotation of a motor or wheel and
provides feedback to the robot’s control system. Encoders are commonly used in mobile
robots to enable precise control of the robot’s motion and position. An encoder typically
consists of a disk with evenly spaced slots and a light source and detector (see Figure 3.3 for
reference). As the disk rotates, the slots interrupt the light beam, generating a series of pulses
that correspond to the rotation of the motor or wheel. The frequency and direction of these
pulses are used by the robot’s control system to determine the speed and position of the robot.
Encoders can be used in a variety of ways in mobile robots. For example, they can be used in
wheel encoders to provide feedback on the speed and position of the robot’s wheels, or in
joint encoders to provide feedback on the position of robot arms or other manipulators. By
using encoders, mobile robots can navigate accurately and avoid obstacles, perform precise
manipulation tasks, and achieve other complex behaviors.

If we take into account the unicycle-like robot described in Section 3.1.2, we can define
the relationship between the distance covered by the right and left wheels and the distance
covered by the robot and changing in its orientation. So, being d the distance between the
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two wheels, from the Equation (3.5) we can write:

uk =
uR,k +uL,k

2

wk =
uR,k−uL,k

d
, (3.6)

where (uR,k,uL,k) is the distance covered in the time interval (k δt ,(k+1)δt) (being δt the
discretization step) by the right and left wheels. The distance uR,k covered at time step k by
the right wheel is related to a noisy encoder reading ue

R,k = uR,k +nR,k, where the noise term
nR,k is assumed a 0-mean Gaussian random variable with variance given by KR|uR,k|, being
KR a positive constant (similarly, for the left wheel, the variance of the noise term nL,k is
KL|uL,k|).

The formulas in (3.6), knowing the encoder readings, can then be used to express the
discrete time dynamics of a unicycle-like robot as in (3.5), obtaining:

pk+1 =

 xr,k+1

yr,k+1

θk+1

=

 xr,k +
uR,k+uL,k

2 cos(θk)

yr,k +
uR,k+uL,k

2 sin(θk)

θk +
uR,k−uL,k

d

 . (3.7)

Visual odometry Visual odometry is a technique used in robotics and computer vision that
estimates the motion of a robot or a camera based on the changes in the visual input captured
by its sensors. The goal of visual odometry is to determine the 3D position and orientation
of a camera or robot as it moves through an environment using only visual input. In visual
odometry, the camera or robot’s motion is estimated by analyzing the changes in the images
captured by its sensors over time. This is typically done by tracking features in the images,
such as corners or edges, and computing the displacement of these features between frames.
By integrating the displacement information over time, the camera or robot’s position and
orientation can be estimated. Visual odometry is commonly used in robotics applications,
such as unmanned aerial vehicles (UAVs), autonomous cars, and mobile robots, to estimate
their position and orientation relative to the environment. Visual odometry can also be used in
virtual reality and augmented reality applications to track the user’s position and orientation
in real-time.

The outputs of the visual odometry are generally the camera pose in 3D space and the 3D
point cloud. In particular, the camera pose is usually expressed as transformation matrix T f

c

(transformation matrix of the camera relative to a reference frame):

T f
c =

[
R t
0 1

]
, (3.8)
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Fig. 3.4 Visual odometry takes images as inputs and generates a camera trajectory as output.

where R is a 3×3 rotation matrix representing the orientation of the camera and t is a 3×1
translation vector representing the position of the camera. The rotation matrix is expressed
as:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (3.9)

where ri j denotes the i-th row and j-th column element of the rotation matrix. The translation
vector t can be expressed as:

t =

tx
ty
tz

 , (3.10)

where tx, ty, tz represent the elements of the translation vector. The transformation matrix in
Equation (3.8) can be then expressed as:

T f
c =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 . (3.11)

Some visual odometry systems also provide the 3D point cloud that is a collection of 3D
points in the scene that have been reconstructed from the visual input. Each point can be
represented as a vector:

ppc =

xpc

ypc

zpc

 . (3.12)
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Furthermore, from Equation (3.8) we can obtain the components of the agent displace-
ments ∆k for the Equation (3.2), specifically, for the translational components δ o

x,k and δ o
y,k

we have: [
δ o

x,k

δ o
y,k

]
=

[
tx,k− tx,k−1

ty,k− ty,k−1

]
, (3.13)

where tx,k is the translation vector representing the camera x position at time k and tx,k−1 is
the translation vector representing the camera x position at time k− 1. The same applies
to the y components of the translation vector. Finally, in order to determine the rotational
component δ o

θ ,k, we have to derive the yaw angle from Equation (3.9):

yaw (ψ) = atan2(r21,r11), (3.14)

and we can write:
δ

o
θ ,k = ψk−ψk−1. (3.15)

Equation (3.3) can be then expressed as follows:

pk+1 =

 xa,k+1

ya,k+1

θk+1

=

 xa,k + tx,k− tx,k−1

ya,k + ty,k− ty,k−1

θk +ψk−ψk−1

 . (3.16)

Exteroceptive sensors

An exteroceptive sensor refers to a sensor that collects information about the environment
surrounding the robot. These sensors enable the robot to perceive and respond to changes
in its surroundings, allowing it to navigate through its environment, avoid obstacles, and
interact with objects. Examples of exteroceptive sensors used in robotics include cameras
that are used to capture images and videos of the robot’s surroundings, allowing it to detect
and recognize objects, people, and obstacles. LiDARs are sensors that emit laser beams to
measure the distance between the robot and objects in its environment; this information is
used to generate a 3D map of the robot’s surroundings, which can be used for navigation
and obstacle avoidance. Ultrasonic sensors are sensors that use sound waves to detect the
distance between the robot and objects in its environment; they are commonly used for
obstacle detection and avoidance. Infrared sensors are sensors that detect the presence of
infrared radiation, which can be used to detect the heat signatures of objects in the robot’s
environment. Ultra-Wideband (UWB) sensors use short-range radio waves to measure
distance and detect the presence of objects in the environment. UWB sensors can be used for
a variety of applications in robotics, including localization and mapping, object detection
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and tracking and collision avoidance. UHF RFID (Ultra-High Frequency Radio Frequency
Identification) sensors are another type of exteroceptive sensor used in robotics that use radio
waves to identify and track objects. UHF RFID sensors consist of a reader and one or more
tags, which contain an antenna and a small integrated circuit. The reader emits a radio signal,
which is picked up by the antenna in the tag. The tag then responds with a signal that contains
information about the object it is attached to, such as its identity.

By using exteroceptive sensors, robots can operate autonomously in a wide range of
environments, from factories and warehouses to outdoor environments such as fields and
forests. In this section we will focus on three typologies of exteroceptive sensors: UHF-RFID,
UWB and cameras1.

UHF-RFID UHF RFID (Ultra-High Frequency Radio Frequency Identification) sensors
are a type of exteroceptive sensor used in robotics that use radio waves to identify and track
objects. UHF RFID sensors consist of a reader and one or more tags, which contain an
antenna and a small integrated circuit. The reader emits a radio signal, which is picked up by
the antenna in the tag. The tag then responds with a signal that contains information about
the object it is attached to, such as its identity. UHF RFID sensors are commonly used in
robotics for a variety of applications, including:

• Object tracking: UHF RFID sensors can be used to track the movement of objects
through a warehouse or manufacturing facility. This information can be used to
optimize workflows and improve efficiency.

• Inventory management: UHF RFID sensors can be used to track inventory levels and
monitor the location of products in a warehouse or retail environment.

• Asset tracking: UHF RFID sensors can be used to track the location of valuable assets
such as tools or equipment. This information can be used to improve asset utilization
and prevent loss or theft.

One advantage of UHF RFID sensors is their long-range capability, which allows them to read
tags from several meters away. This makes them ideal for applications where the object being
tracked is moving through a large area, such as a warehouse or distribution center. However,
UHF RFID sensors may not be as accurate as other types of sensors, and they require
specialized hardware and software to integrate them into a robotic system. Furthermore, the
tags are passive and there is no need for powering them with batteries. Another advantage

1Among radiowaves-based sensors (that can be classified as exteroceptive sensors), Bluetooth Low Energy,
Wi-Fi, ZigBee, LoRa, radars and mm-Wave radars are also used for positioning.
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carried by this technology is that the RFID readers can separate the signals coming from the
tags, making them capable of solving the data-association problem intrinsically. We consider

Fig. 3.5 UHF-RFID antenna and tag. At the beginning of the process, the RFID reader (on the right)
creates an electromagnetic wave (in red) and transmits it. When the electromagnetic wave meets an
RFID tag, the backscatter coupling occurs. With the energy resulting from the coupling, the microchip
on the tag (on the left) performs its functions and sends the contents of its memory to the reader,
modulating and reflecting the received electromagnetic wave (dashed black lines).

here a reader installed onboard the agent/robot that collects the phases of passive RFID
signals backscattered by L tags located in position (xT1 ,yT1), · · · ,(xTL ,yTL). The collected
signal at time k from the jth tag is:

Vk, j(on/off) = Ak, j(on/off)e jΦk, j(on/off), (3.17)

where Ak, j(on/off) and Φk, j(on/off) are the amplitude and phase of the signal modulated by
the tag’s binary (on/off) data sequence. In ideal conditions, the phase Φk, j accounts for the
round trip of wave propagation between the vehicle and the tag. In practical conditions, a
commercial RFID reader extracts the differential received signal between the two modulating
states of the tag:

ξk, j = arg(Vk, j(on)−Vk, j(off)), (3.18)
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that includes bias hardware noise and the interference of the signal with the environment. In
indoor environments and in presence of scattering objects as furniture, benches, appliances,
etc. the signal scattered by the tag feels the effects of the electromagnetic coupling of
antennas with the environment, so its intensity and phase differ from that of ideal conditions.
In particular there are positions where the signal is so weak that it is not received (i.e. it
is below the hardware noise threshold) and positions where the intensity is higher than the
noise threshold but the phase is perturbed, i.e. the measured phase ξk, j differs from the value
calculated considering only the round trip path. This effect is particularly noticeable in case
of standard tags as inlay tags based on dipole-like antennas and a matching network. They are
sensitive to multipath (i.e. the bouncing of the signals from the surfaces of the environment)
and to the material of the surface where they are placed on, since they suffer from impedance
mismatch and loss of efficiency that affect, moreover, the phase offset. For these reasons, the
phase measurement at time k collected by the reader onboard the robot for each tag can be
defined as:

φk = mod (−2KDk +φo +φm,k +nφ ,k,2π), (3.19)

where K = 2π/λ (with λ the wavelength of the electromagnetic signal), Dk is the tag-reader
distance, φo is an unknown offset depending on the hardware and nφ ,k is, at each time k,
a 0-mean Gaussian noise and φm,k is a disturb of the phase that accounts for effects (i.e.
multipath) of the environment. The Equation (3.19) could then be used as a model for the
UHF-RFID phase measurements, and this will be exploited later in this dissertation.

TriLateration Tags (TLT) In this section, we will discuss about a particular UHF-RFID
tag configuration that has been proposed and successfully applied in practice in the context
of localization and SLAM problems. Specifically, we observed that the phase difference of
the signals of two neighboring RFID tags is a function of the distance between the reader
and the tags and this function is single-valued if appropriate conditions are met. Considering
the schema shown in Figure 3.6, we have a robot that moves along a straight line x while
it receives the signals from two tags deployed on the ceiling at positions (±d

2 ,0,ZT ). The
distance between the tags is d, while the reader-tag distance is Dk, with k = 1,2. The phase
of tag k calculated taking into account only the geometric distance is

φk = mod (−2KDk,2π), (3.20)
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Fig. 3.6 The considered schema for the resilient localization problem.

where K = 2π/λ , λ = 34 cm is the wavelength of the electromagnetic signal, while the mod
function accounts for the periodicity of the phase. The phase difference is calculated as

∆φ12 = mod (φ1−φ2,2π),

and is plotted in Figure 3.7 for the cases d =10 cm and d =25 cm, while the reader on board
the robot moves along the line (xr,0,ZR) with −5 m < xr < 5 m and ZT − ZR = 3 m. It
is worth noting that, for d = 10 cm, ∆φ12 is a single-valued function of x while, for larger
distances, it becomes multi-valued. The single-valued property is limited to the domain where
it is defined (i.e. −5 m< xr < 5 m) and depends on the distance ZT −ZR, as well as on d.
Different combinations of these parameters can be found to satisfy the single-valued property
on different domains. Evidently, the single valued function ∆φ12(x) allows to localize the
robot in the interval −5 m < xr < 5 m univocally. That property can be exploited in a 3D
domain by means of a suitable deploying of the tags. We chose to deploy tags by grouping
them three-by-three as shown in the schema of Figure 3.8, with tags arranged in a radial
pattern spaced at an angle of 120◦. We call that deployment TriLateration Tag since the
short distance d makes the set of three tags a single structure while its use is based on the
trilateration principle. Each TLT allows to have three phase differences, namely ∆φ12, ∆φ13
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Fig. 3.7 Phase difference ∆φ12 with d = 10 cm and d = 25 cm, while the reader moves along the line
(xr,0,ZR) with −5 m < xr < 5 m.

Fig. 3.8 Schema of the TriLateration Tag (TLT).
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and ∆φ23, which constitute a triplet of values that univocally marks each point of the (x,y)
plane inside the domain where the TLT has been tuned.

In the case one of the tags composing the TLT is not visible, we consider the TLT as
not visible at all. Furthermore, the maximum speed at which this kind of tags can be used
depends on the RFID reader sampling time.

This particular configuration for UHF-RFID tags will be exploited in several robot
perception applications in the following sections.

UWB Ultra-Wideband (UWB) sensors are a type of exteroceptive sensor used in robotics
that use radio waves to measure distance and detect the presence of objects in the environment.
UWB sensors operate by emitting short pulses of radio waves at a very high frequency,
typically between 3.1 GHz and 10.6 GHz, and measuring the time it takes for the waves to
bounce back after they have been reflected by an object. UWB sensors can be used for a
variety of applications in robotics, including:

• Localization and mapping: UWB sensors can be used to create detailed maps of indoor
environments by measuring the distance between the robot and various objects in the
environment. This information can be used to create a 3D map of the environment that
the robot can use for navigation.

• Object detection and tracking: UWB sensors can be used to detect the presence of
objects in the environment and track their movement. This is particularly useful for
robotics applications such as object sorting or autonomous vehicles.

• Collision avoidance: UWB sensors can be used to detect obstacles and other hazards
in the environment, allowing the robot to avoid collisions and navigate around them.

One advantage of UWB sensors is their high accuracy and precision, which makes them
particularly useful for applications that require precise measurements and real-time data.
However, UWB sensors can be expensive and may require specialized hardware and software
to integrate them into a robotic system. Figure 3.9 depicts the process of ranging measurement
between two UWB antennas that is based on the measurement of the time of flight Tf between
the devices and that is defined as follows:

Tf =
Tloop−Treply

2
. (3.21)

Let us consider a reader installed onboard the agent/robot that collects the range mea-
surements from M UWB antennas located on the ground in position (xu1 ,yu1), . . . ,(xuM ,yuM).
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Fig. 3.9 UWB ranging measurement. The ranging is accomplished through Time of Flight (ToF)
measurements between the devices; these are used to calculate the roundtrip time of challenge/response
packets.
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The collected signals at time k from the M antennas are denoted with ρk which is defined as
follows:

ρk = [ρ1,k . . . ρM,k]
T , (3.22)

where ρ1,k, . . . ,ρM,k are the range measurements from the UWB antennas at time k. Each
range measurement ρi,k is affected by a zero-mean Gaussian noise nρi,k, i = 1, . . . ,M, with
standard deviation σρ , it is affected by ηi,k that is the bias due to noise and other errors and
it is affected by ρm,i,k that accounts for multipath effects in the environment. For a UWB
antenna i at time k, we can then write:

ρi,k =
√

(xui− xa,k)2 +(yui− ya,k)2 +ρm,i,k +nρi,k +ηi,k, (3.23)

where we suppose that the agent is in position (xa,k,ya,k) at time k.

Cameras Cameras used for robotics can vary widely depending on the specific application
and requirements of the robot. However, there are some general characteristics that are
commonly found in cameras used for robotics:

• High resolution: Cameras used for robotics often need to capture high-resolution
images or video in order to provide accurate information to the robot’s control system.

• Fast frame rate: To capture moving objects or events in real-time, cameras used for
robotics typically have a fast frame rate, allowing them to capture multiple frames per
second.

• Low latency: Cameras used for robotics need to provide information to the robot’s
control system as quickly as possible, so low latency is a critical characteristic. This is
especially important in applications where the robot needs to react quickly to changes
in its environment.

• Wide field of view: Depending on the application, cameras used for robotics may need
to capture images or video over a wide field of view in order to provide comprehensive
information about the robot’s surroundings.

• Robustness: Cameras used for robotics may be subjected to harsh environments or
vibrations, so they need to be designed to withstand these conditions.

• Integration with robot control system: To provide the necessary information to the
robot’s control system, cameras used for robotics must be compatible with the robot’s
control system and able to communicate with it in real-time.
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In particular, there are several types of cameras used for robotics and those can be summarized
here:

• 3D cameras: These cameras use depth-sensing technology to create 3D images of
the robot’s surroundings. This can be useful for tasks such as object recognition,
navigation, and obstacle avoidance.

• Thermal cameras: Thermal cameras can detect heat signatures, allowing robots to
"see" in low light or no light environments. They can also be used to detect anomalies
or changes in temperature, which can be useful for tasks such as monitoring equipment
or detecting fires.

• Infrared cameras: Infrared cameras can detect infrared radiation, which can be useful
for tasks such as tracking the movement of people or animals.

• Stereo cameras: Stereo cameras use two cameras placed at a distance apart to create
a 3D image of the robot’s surroundings. This can be useful for tasks such as depth
perception, object recognition, and obstacle avoidance.

Overall, cameras are a critical component of robotics and can provide robots with the visual
information they need to navigate, interact with their environment, and perform tasks.

Fig. 3.10 The Intel RealSense D435 Camera. It is a 3D depth camera that uses advanced stereo vision
technology to capture depth information and enable applications such as augmented reality, virtual
reality, and 3D scanning. It features a depth sensor with a range of up to 10 meters, an RGB sensor
with a resolution of 1920x1080 at 30fps, and an infrared sensor for improved depth perception in
low-light conditions.

In the context of the presented resilient perception subsystem, the cameras, intended as
exteroceptive sensors, have been used to perform a vSLAM task based upon the state-of-
the-art ORBSLAM2 algorithm, summarized in Section ORB-SLAM2. Figure 3.10 shows
a 3D depth camera that uses advanced stereo vision technology to capture depth and RGB
images and that has been used in the experiments to validate the methodology presented in
this dissertation. Specifically, the ORBSLAM2 algorithm has been used to provide the point
cloud (i.e. a map of the environment) as expressed in the formula (3.12).
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3.2 Resilient perception subsystem

The ability of robots to perceive their environment accurately is crucial for their successful
operation in real-world scenarios. Localization and mapping are two fundamental problems
that a robot’s perception subsystem must solve to achieve this capability. Localization
aims to estimate the robot’s position and orientation within its environment, while mapping
involves creating a representation of the environment through which the robot is moving.
However, these tasks can be challenging due to the uncertainties and dynamic nature of the
environment.

Simultaneous Localization and Mapping (SLAM) is a technique that addresses both
problems simultaneously by integrating the robot’s motion with sensor data to build a
map of the environment while localizing the robot within it. The resilience of the robot
perception subsystem is critical in real-world scenarios where unexpected events, such as
sensor failures or changes in the environment, can occur. This section focuses on the resilient
robot perception subsystem, with a particular emphasis on the localization problem and the
SLAM problem.

The state-of-the-art techniques and approaches of resilient robot perception have been
widely discussed in Chapter 2, to underline the importance of introducing enhancements to
the robustness of perception subsystem. In this section, we want to focus on the progress
made on resilience in terms of outlier detection and rejection and adaptive algorithms,
presenting a methodology based on traditional techniques (e.g. Kalman filter) and deep
learning techniques (e.g. Deep Learning) to localization and SLAM perception problems.

3.2.1 Resilient localization

As robots become increasingly integrated into our daily lives, they face the challenge of
operating in a variety of environments with varying levels of complexity and uncertainty.
Localization, or the ability of a robot to accurately determine its position and orientation in
its surroundings, is a critical aspect of robot autonomy and navigation. However, localization
can be difficult in environments that are dynamic, noisy, or have limited sensor visibility.

Resilient localization is an emerging area of research that aims to address these challenges
by developing robust localization algorithms that can adapt to changing environmental
conditions and handle sensor failures or inaccuracies. In this section, we will explore the key
concepts and techniques involved in resilient localization for robots, focusing on a setup with
a unicycle-like vehicle with a differential drive kinematics with wheel encoders odometry
and a system composed of UHF-RFID antenna and RFID tags with structures (denoted in
the following as TriLateration Tags (TLT)) comprising three tag antennas close one each
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other, displaced in an indoor environment. We will discuss the importance of sensor fusion
in developing resilient localization algorithms, as well as the trade-offs between accuracy,
complexity, and computational efficiency.

Global resilient localization problem

We are considering here an indoor global robot localization problem where a unicycle-like
vehicle moves in an indoor environment and the exteroceptive sensors that are going to be
used on the robot are UHF-RFIDs.

Specifically, we exploit the TLT RFID tags configuration, presented in Section TriLatera-
tion Tags (TLT), and here we consider them to be placed on the ceiling of the environment.
The density of the tags is assumed very low, in such a way that the robot (a unicycle-like
vehicle with a differential drive kinematics) rarely detects more than one tag at a time. In
order to formulate the global localization problem, we need to describe the robot discrete
time dynamics that has been presented in Section 3.1.2 through the Equation (3.5). Since
we are considering that the robot is provided with wheel encoders, we can assume that the
discrete time dynamics of the robot is the one given in Equation (3.7). Furthermore, a reader
is installed on-board the robot and collects the phases of the RFID signals back-scattered by
the RFID tags, where the phase measurements are given by the formula in (3.19).

The problem addressed here is the estimation of the robot pose which is assumed com-
pletely unknown at the beginning, given the measurements from the encoders and from the
UHF-RFIDs. In order to solve the global localization problem, we propose the use of an
Extended Kalman Filter to fuse the odometry readings with the phase measurements in order
to obtain an accurate pose estimate of the robot, while being robust against disturbances and
unmodeled phenomena through a resilient engine. The proposed solution to this problem
will be presented in Chapter 4.

3.2.2 Resilient SLAM

Resilient SLAM (Simultaneous Localization and Mapping) is an approach to robotic mapping
and navigation that emphasizes the ability of the system to recover from errors or unexpected
events. SLAM is a critical function for autonomous robots, enabling them to navigate and
map their environments (as described in Section 2.1.4), but traditional SLAM systems can be
brittle and prone to failure if the robot encounters unexpected obstacles or the environment
changes. Resilient SLAM aims to address these challenges by incorporating techniques such
as robust optimization, sensor fusion, and adaptive planning to enable the system to recover
from errors and continue operating in challenging environments. By improving the resilience
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of SLAM systems, we want to enable more reliable and robust autonomous agents and robots
that can operate effectively in real-world settings.

Resilient SLAM using UHF-RFID tags for a unicycle-like robot

In this section we describe a methodology to solve the SLAM problem using UHF-RFID
tags, providing the system with a resilient engine in order to cope with outliers in the
measurements. The methodology, here exploits a Multi Hypothesis Extended Kalman Filter
(MHEKF) which, based on the wheel encoder readings and on the phase measurements
coming from a given tag, is able to provide an estimate of the range and of the bearing of that
tag with respect to the robot. Once the range and the bearing of the tags is available, standard
SLAM approaches can be considered. Since the ID of the tags is available, an EKF-SLAM
based algorithm can be adopted as a valid solution to the problem. This approach presents
several interesting features that are described below.

First of all the time complexity is low; in fact, even if there is a MHEKF running for
each tag, every MHEKF contains a limited number of EKF instances (typically between
10 or 20, depending on the maximum detection range of the reader) and each instance is
a 3D EKF (it estimates the range, the bearing and the phase offset of the tag). Another
interesting feature is the intrinsic robustness of the approach against disturbances, since, in
this case, hypotheses are not pruned and the algorithm is able to restore a good behavior
after possible unreliable periods, where strong perturbations could have compromised the
effectiveness of the approach, or of part of the approach, for a while. This has been obtained
by providing the algorithm with a resilience module, formulated on a robust residual-based
adaptive estimation EKF, which may decide to switch off the measurements coming from a
given tag if the position estimate of this tag appears not reliable enough, according to defined
metrics that will be reported in the following chapters. When the position estimate of the
switched off tag returns reliable, this tag may be restored and included in the estimation
process. The algorithm may also handle situations where a tag position is changed at some
unknown time during the experiment. It is interesting to observe that, even under multipath
effects or other perturbations, a wrong but stable estimate of a tag position could provide a
virtual landmark which helps in any case the robot pose estimation process. Clearly, in that
case, the tag position estimate will be wrong but it can be corrected if the robot reaches an
area where the disturbance, causing the wrong tag estimate, decreases. Finally, being the
phase offset included in the estimation process, also the problem of an unknown and possibly
non constant offset may be handled to some extent by the proposed algorithm.

The system setup considered in this SLAM problem is an indoor environment with a
specific number L of RFID tags located on the ceiling, as depicted in Fig. 3.11. The (x,y,z)
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Fig. 3.11 The indoor environment with the robot in its initial position and six tags placed on the ceiling.
The triplet (x,y,z) defines the absolute reference frame. The robot reference frame (x(r),y(r),z(r)) is
also a static frame which is defined by considering the initial pose of the robot.

absolute reference frame is defined by assuming that the floor is the z = 0 plane, with the
z-axis pointing toward the ceiling. For this methodology, everything will be described with
respect to this frame. However, in the SLAM algorithm, the robot will reconstruct its path
and the tag coordinates with respect to another frame defined with the origin in the initial
robot position and with the x axis oriented along the initial motion direction. The robot frame
is also a static frame related to the global frame through a roto-translation in the xy plane.

The robot that will be considered is a unicycle-like vehicle with a differential drive
kinematics as described by the formulae in Section 3.1.2. The robot carries a UHF-RFID
reader that collects the phases of the RFID signals backscattered by L tags located in unknown
positions (xT1,yT1), · · · ,(xTL ,yTL), as already mentioned in Section UHF-RFID. If we consider
the Equations (3.7) and (3.19) for the discrete time dynamics of the robot and the phase
measurements respectively, we can define the range ρi,k and the bearing βi,k of a RFID tag i
as follows:

ρi,k =
√

(xr,k− xTi)
2 +(yr,k− yTi)

2, (3.24)

βi,k = θk− atan2(yTi− yr,k,xTi− xr,k), (3.25)

where (xTi,yTi) are the unknown coordinates of tag Ti. According to this definition, the
distance Dk in (3.19) when the ith tag is observed, is given by

√
ρ2

i,k +h2, where h is the
ceiling height, approximately known. When the robot moves (the tag is assumed fixed in its
unknown position (xTi,yTi)), the range ρi,k and the bearing βi,k change over time. Knowing
the wheel displacements uR,k and uL,k, it is possible to derive the equations which describe
the dynamics of the variables (ρi,k,βi,k). We obtain, after discretization:

ρi,k+1 = ρi,k−uk cos(βk), (3.26)

βi,k+1 = βi,k +ωk +
uk

ρi,k
sin(βi,k), (3.27)



3.2 Resilient perception subsystem 85

where uk and ωk have been defined in (2.8). Each tag position with respect to the robot is
estimated with a Multi-Hypothesis Extended Kalman Filter that fuses the phase measurements
with the odometry readings. The objective here, is to solve a Simultaneous Localization
and Mapping (SLAM) problem, so that both the robot pose and the tags position (which
represent the unknowns of the problem) could be estimated at the same time while resisting
the effects of outliers in the measurements. The known quantities in the problem are the
encoder readings, the phases of the signal backscattered by the RFID tags on the ceiling and
an approximate value of the ceiling height h with respect to the reader on the robot. The
solution approach to this problem will be presented in Chapter 4.

Resilient SLAM using TriLateration UHF-RFID tags for a unicycle-like robot

In this section we describe a methodology to solve the SLAM problem using UHF-RFID
tags with TriLateration structure, providing the system with a resilient engine in order to
cope with outliers in the measurements.

The methodology, here exploits a Multi Hypothesis Extended Kalman Filter (MHEKF)
which, based on the wheel encoder readings and on the phase measurements coming from
a given tag, is able to provide an estimate of the range and of the bearing of that tag with
respect to the robot. Once the range and the bearing of the tags is available, given that the ID
of the tags is known, an EKF-SLAM based algorithm can be successfully adopted to solve
the problem. As the methodology described in the previous section, the time complexity is
low as even if there is a MHEKF running for each tag, every MHEKF contains a limited
number of EKF instances (typically between 10 or 20, depending on the maximum detection
range) and each instance is a three dimensional EKF (it estimates the range, the bearing and
the orientation of the TriLateration Tag with respect to the robot). Another interesting feature
of the proposed approach is the resilience against disturbances, since hypotheses are not
pruned and the algorithm may be able to restore a good behavior after possible unmodeled
perturbations.

This method extends the methodology presented in the previous section by replacing
standard RFID tags with TLT structures comprising three tag antennas close one each other
that have been already presented in Section TriLateration Tags (TLT). The steady state
localization error is significantly lower than the one obtained with uniform mesh of standard
tags, deployed with the same density and in principle, if also the orientation of the TLT is
considered in the SLAM algorithm, it would be possible to solve a SLAM problem even
if only one of these TLT is available. Thus, the proposed approach is particular appealing
in large environments, such as warehouses, where tags should be deployed with very low
densities. We consider an indoor environment with L RFID TriLateration Tags located on
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Fig. 3.12 The indoor environment with the robot in position and the TriLateration tag structure with
its geometric description.

the ceiling. Each TLT is a structure of the type reported in Figure 3.12. The ceiling height
will be denoted by h and will be assumed known. The robot is a unicycle-like vehicle with a
differential drive kinematics as the one described with the formulae reported in Section 3.1.2.
We consider the Equations (3.7) and (3.19) for the discrete time dynamics of the robot and
the phase measurements respectively, considering the tags in a TLT configuration, as we want
to derive the discrete time dynamics of the quantities ρ , β and θB reported in Figure 3.12.
So, if i and j, i, j ∈ {1,2,3}, are two antennas in the TLT, let Li j be the known distance
between antennas i and j. Let P1 = (xT LT

1 ,yT LT
1 ), P2 = (xT LT

2 ,yT LT
2 ) and P3 = (xT LT

3 ,yT LT
3 )

be the vertexes of the triangle formed by the three antennas of the TLT (see Figure 3.12). We
will consider as reference point in the TLT the vertex P1, and, at time step k, we will define
the range and the bearing of the TLT by considering the range ρk and the bearing βk of this
vertex with respect to the robot:

ρk =
√

(xT LT
1 − xr,k)2 +(yT LT

1 − yr,k)2, (3.28)

βk = atan2(yT LT
1 − yr,k,xT LT

1 − xr,k)−θk. (3.29)

We now introduce also the angle θB between the line through P1 and P2 and the robot
orientation:

θB,k = θ12−θk, (3.30)

where θ12 = atan2(yT LT
2 − yT LT

1 ,xT LT
2 − xT LT

1 ) is the constant (unknown) angle between the
line through P1 and P2 and the x-axis of the global reference frame.
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It is possible to derive the discrete time dynamics of these quantities (analogously as
done in the previous Section) to obtain:

ρk+1 = ρk−uk cos(βk), (3.31)

βk+1 = βk +
uk

ρk
sin(βk)−ωk, (3.32)

θB,k+1 = θB,k−ωk. (3.33)

The available measurements are the phase readings from the three antennas forming the TLT.
To write these measurements, we first compute the distance D1, D2 and D3 of, respectively,
antennas 1, 2 and 3 of the TLT from the robot. Exploiting the TLT variables defined so far,
we can write:

D1 =
√

ρ2 +h2, (3.34)

D2 =
√

ρ2 +L2
12 +2ρ L12 cos(β −θB)+h2 (3.35)

D3 =
√

ρ2 +L2
13 +2ρ L13 cos(β −θB−ψ)+h2, (3.36)

where ψ is the (constant and known) angle between the line through P1 and P2 and the
line through P1 and P3 (see Figure 3.12). The phase measurements from the three antennas
forming the TLT can then be written as in (3.19), with Dk respectively given by (3.34), (3.35)
and (3.36).

It is then possible to estimate the pose of the TLT with respect to the robot, i.e. to estimate
the variables (ρ,β ,θB) through a MHEKF applied to the system with dynamics (3.31)-(3.33)
and using the phase measurements coming from the three antennas of the TLT. The output of
the MHEKF will be then used as an input for the SLAM algorithm. The details about the
solution will be presented in Chapter 4.

Resilient SLAM using UWB for a unicycle-like robot

In this section we describe a methodology to solve the SLAM problem using UWB antennas,
providing the system with a resilient engine in order to cope with outliers in the measurements.
The proposed SLAM algorithm is based on an always active range and bearing estimation of
any responding landmark (i.e. UWB antenna). This estimation can be performed through a
2D Extended Kalman Filter (one for each landmark), fed with the robot odometry and the
range measurements. To improve the convergence rate, we propose to use a MHEKF, which
comprises a small set of EKF instances, each one initialized with a different possible bearing
of the detected landmark. Once the range and the bearing of the responding landmarks is
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available, an EKF SLAM algorithm is considered to solve the problem. The MHEKF has the
effect of transforming range measurements in range and bearing measurements, and hence
to lead the original RO-SLAM problem back to a standard SLAM problem. The proposed
EKF-SLAM algorithm is endowed with a resilient module to improve robustness against
disturbances. More in detail, if the range and the bearing of a landmark are not considered
reliable enough, the associated landmark is not activated or it is switched off if already active.
It will be restarted and reinitialized only when its range and bearing estimates will become
reliable again. The landmark reinitialization is straightforward since the MHEKF provides
both the range and the bearing of the associated landmark. This schema allows to easily face
strong perturbations, like the ones indicated above, namely significantly wrong measurements
(also at the beginning, due, e.g., to multipath phenomena) or even the shift of a landmark. The
decentralized structure of the approach, where the range and the bearing of each landmark are
estimated through independent MHEKFs, is particularly effective in reducing the propagation
of strong perturbations: as shown through numerical and experimental results, if a landmark
is suddenly shifted or strongly perturbed for a while, the proposed approach ignores it and
the SLAM algorithm safely proceeds using the other landmarks. Then, when the perturbation
is terminated, the landmark is reinitialized and included again in the algorithm.

In the proposed approach, we consider 2D applications (for instance, mobile robots
moving on the ground). The height of the landmarks, if different from the height of the robot,
is assumed roughly known: this is often the situation in many applications (like, e.g., when
the landmarks are placed on the ceiling of an indoor environment). If this is not the case, the
MHEKF can be easily extended to estimate also the height of the landmarks.

Fig. 3.13 Indoor environment with the robot in its initial position and three UWB antennas placed on
pillars at different heights (h1, h2 and h3). The triplet (x,y,z) defines the absolute reference frame. The
robot reference frame (xr,yr,zr) is also a static frame which is defined by considering the initial pose
of the robot. The position of the three UWB antennas is given by (xT1 ,yT1), (xT2 ,yT2) and (xT3 ,yT3).
The height hi of the antennas, assumed equal to the height of the robot antenna (unless otherwise
specified), is also indicated.
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For this method, we are going to consider a unicycle-like vehicle with a differential drive
kinematics as the one reported in Section 3.1.2 with the equations related to its discrete
time dynamics. The robot operates in an indoor environment with L landmarks and we can
define ρi,k as the distance at time k between the robot and landmark i, located in an unknown
position (xTi,yTi), i = 1,2, . . . ,L and we can define:

zi,k = ρi,k +ni,k, (3.37)

as a measurement of this distance, with ni,k being a 0-mean Gaussian noise with standard
deviation σρi . A schematics of the geometry of the proposed setting with the robot location
and the UWB antennas locations is provided in Figure 3.13.

We finally need to define which are the discretized dynamics of the range and bearing
of each UWB landmark and if the bearing of the landmark i with respect to the robot at
time-step k is:

βi,k = atan2(yTi− yr,k,xTi− xr,k)−θk, (3.38)

we can write the discrete time dynamics of the range and bearing as follows:

ρi,k+1 = ρi,k−uk cos(βi,k)

βi,k+1 = βi,k +
uk

ρi,k
sin(βi,k)−wk. (3.39)

In order to solve the presented SLAM problem, the UWB antennas range and bearing will be
reconstructed and then a resilient SLAM algorithm will be applied; this will be presented in
Chapter 4.

Resilient SLAM using UWB and Visual Odometry for an autonomous agent

In this section we describe a methodology to solve the SLAM problem using UWB antennas
and Visual Odometry, providing the system with a resilient engine in order to cope with
outliers in the measurements and sensor failures. The proposed SLAM approach is based
on an on-line range and bearing estimation of any responding UWB antenna performed
through an Extended Kalman Filter (EKF), one for each UWB landmark, fed with the Visual
Odometry and the range measurements. The use of Visual Odometry allows to apply the
approach in more general contexts where encoder readings are not reliable enough or simply
not available (this may occur, e.g., in agricultural applications) to a generic autonomous
agent. The range and bearing estimate of a responding UWB antenna, provided by the
corresponding EKF, are fused with the VO through an EKF-SLAM algorithm, particularly
suited in this context due to the availability of the data association, which allows to realize a
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map with the position of the UWB antennas while simultaneously localizing the agent inside
this map. The algorithm is resilient in the sense that it is capable of functioning even when
the Visual Odometry is not available for a while: in this case the UWB map is frozen and
the agent localization is achieved by considering in the main EKF algorithm only the UWB
measurements; in this case, the computation times are shorter compared to the ORB-SLAM2
algorithm (that has been used as the Visual Odometry system).

Here then, we propose a method to reconstruct the bearing of a responding landmark
in case of range only measurements, thus solving a SLAM problem. Then, the proposed
algorithm is endowed with a resilient module to improve robustness against disturbances.
More in detail, the resilient module is designed to properly exploit the range and the bearing
estimate of the UWB antennas, based on their level of confidence and is also able to
understand if it is necessary to reinitialize the estimate of a UWB landmark position (caused,
e.g., by a diverging estimate or even by an unknown shift of the UWB antenna). This also
allows to overcome the problem of a bad feature initialization, which may seriously afflict
other SLAM approaches, where the feature estimate initialization is often performed only
once at the beginning. Finally, the proposed algorithm is supervised by a switching observer
which modifies the filter structure when a VO failure is detected. Furthermore, the proposed
algorithm is capable of working with any number of UWB antennas (at least one should be
there if no VO is available) that may also vary during the run.

The system setup considered in this approach is an indoor environment with L UWB
antennas located on the ground. The agent carries an UWB antenna at the same height as
the other antennas and a camera while moving freely in the environment. The agent has
been described in Section 3.1.1 and we are considering the Equation (3.3) for a generic agent
moving in the space. The agent considered here also carries an UWB antenna collecting the
range measurements from the L UWB antennas located on the ground in unknown positions
(xu1,yu1), . . . ,(xuL ,yuL). The collected signals at time k from the L antennas are denoted with
ρk which is defined as follows:

ρk = [ρ1,k . . . ρL,k]
T , (3.40)

where ρ1,k, . . . ,ρL,k are the range measurements from the UWB antennas at time k. Each
range measurement ρi,k is affected by a zero-mean Gaussian noise nρi,k, i = 1, . . . ,L, with
standard deviation σρ .
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Fig. 3.14 Representation of the system at time-step k. The picture depicts the agent (black) with three
UWB antennas (red) placed in its environment.

The range ρi,k and bearing βi,k of the UWB antenna i have been defined as follows:

ρi,k =
√

(xa,k− xui)
2 +(ya,k− yui)

2

βi,k = θk− atan2(yui− ya,k,xui− xa,k), (3.41)

where (xui,yui) are the coordinates of the UWB antenna ui. A schema of the system (for
L = 3) is depicted in Figure 3.14, where the black circle represents the agent with its heading,
and the three red circles the UWB antennas with their ranges and bearings. We can then
write the discretized range and bearing dynamics as follows:

ρi,k+1 = ρi,k−δ vo
x,k cos(βi,k)−δ vo

y,k sin(βi,k)

βi,k+1 = βi,k +δ vo
θ ,k +

δ vo
y,k cos(βi,k)−δ vo

x,k sin(βi,k)

ρi,k
,

(3.42)

where: δ vo
x,k

δ vo
y,k

δ vo
θ ,k

=

 x̂vo
k+1− x̂vo

k

ŷvo
k+1− ŷvo

k

θ̂ vo
k+1− θ̂ vo

k

 , (3.43)

being x̂vo
k = [x̂vo

k , ŷvo
k , θ̂ vo

k ]T the estimation of the camera pose at each time-step k, similarly to
what we have defined in Section Visual odometry. Summarizing, the problem that we want
to solve here is the resilient simultaneous localization and mapping of the agent, so that the
agent pose and the antennas position could be estimated at the same time while resisting the
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effects of the outliers in the measurements, using UWB readings and Visual Odometry. The
proposed solution to this problem will be discussed in detail in Chapter 4.

Resilient SLAM using UWB and Visual Odometry for an autonomous agent exploiting
deep learning techniques

In this section we describe a methodology to solve the SLAM problem using UWB antennas
and Visual Odometry, providing the system with a deep learning-based approach to model
the measurements. The proposed approach is based on an Extended Kalman Filter (EKF) to
solve the SLAM problem. The measurement model of the EKF, based on a closed analytic
solution, is replaced with a model based on a deep learning architecture. The use of Visual
Odometry allows to apply the approach in more general contexts where encoder readings are
not reliable enough or not available to a generic autonomous agent. The range and bearing
estimate of a responding UWB antenna are fused with the VO through the EKF-SLAM
algorithm. The methodology allows to estimate both the agent pose and the UWB antennas
position. The algorithm is endowed with a resilient engine able to cope with uncertainties
and outliers in the sensor measurements. Also, the system is able to function even when the
VO and/or some of the UWB antennas are not available for a specific amount of time.

The system is designed to use a more sophisticated measurement model (based on the
training of a Deep Neural Network) that enables the algorithm to calculate better predictions
of the measurements, compared to the analytical solution. As stated before, the system is
also able to cope with discontinuities in the sensor measurements that makes the system more
robust and resilient.

The system setup considered in this approach is an indoor environment with L UWB
antennas located on the ground. The agent carries an UWB antenna at the same height as
the other antennas and a camera while moving freely in the environment. The agent has
been described in Section 3.1.1 and we are considering the Equation (3.3) for a generic agent
moving in the space. The agent considered here also carries an UWB antenna collecting the
range measurements from the L UWB antennas located on the ground in unknown positions
(xu1,yu1), . . . ,(xuL ,yuL). The collected signals at time k from the L antennas are denoted with
ρk which is defined as in Equation 3.40.

The range ρi,k and bearing βi,k of the UWB antenna i have been defined in Equation 3.41.
The discretized range and bearing dynamics are defined in Equation 3.42 and in Equa-
tion 3.43.

Summarizing, the problem that we want to solve is the resilient simultaneous localization
and mapping of the agent, so that the agent pose and the antennas position could be estimated
at the same time while resisting the effects of the outliers in the measurements, using UWB
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readings and Visual Odometry and while using a more precise measurement model in the
EKF-SLAM. The proposed solution to this problem will be discussed in detail in Chapter 4.

3.3 Multi-sensor fusion architectures

Multi-sensor fusion architectures for robotics involve the integration of data from multi-
ple sensors to improve the accuracy, reliability, and robustness of robotic systems. The
use of multiple sensors allows the robot to perceive and understand its environment more
comprehensively and to make more informed decisions about its actions. There are several
different approaches to multi-sensor fusion in robotics, each with its own advantages and
disadvantages. In this section, we will present several architectures that have been developed
and proposed. In Section 2.1.6 we already mentioned the fusion methodologies: probabilistic,
interval calculus, Fuzzy logic, evidence theory and deep learning approaches.

In this section we want to focus on probabilistic approaches to multi-sensor fusion for
robots and autonomous agents.

3.3.1 Odometry-RFID sensor fusion

The problem formulated in Section Resilient SLAM using UHF-RFID tags for a unicycle-like
robot is solved through an EKF algorithm which uses the range and bearing estimation of
each detected UHF-RFID tag provided by a set of MHEKF, one for each tag. The main steps
of the approach are summarized as follows.

1. Initialization. Initialize for each tag a MHEKF and initialize the EKF SLAM.

2. Step k: Multi-Hypothesis EKF. Perform the Multi-Hypothesis EKF for the L UHF-
RFID tags, obtaining range and bearing estimates (ρ̂1,k, β̂1,k), · · · ,(ρ̂L,k, β̂L,k).

3. Step k: Instance instability detection and update. Perform the Instability detection step
and update state and covariance according to the State and covariance update step.

4. Step k: Outlier detection. Perform the Global outliers detection step. Update the fault
and reliability factors.

5. Step k: SLAM Prediction. Perform the Prediction step of the EKF algorithm.

6. Step k: SLAM Correction with robust Kalman gain. Perform the Correction step of the
EKF Algorithm with the modified Kalman gain for resilient sensor fusion.
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7. Set k = k+1 and return to item 2.

□

The sensor fusion is performed through the EKF-SLAM algorithm, fusing odometry
readings with the UHF-RFID measurements in order to provide the robot with an estimate of
its pose and an estimate of the detected tags position. The details of the multi-sensor fusion
architecture will be described in detail in Section 4.1.

3.3.2 Visual-UWB sensor fusion

The problem formulated in Section 3.2.2 for a generic autonomous agent is solved through an
EKF algorithm which uses the range and bearing estimation of each UWB antenna provided
by a set of EKF, one for each UWB antenna. The main steps of the approach are summarized
as follows.

1. Initialization. Initialize for each tag a EKF and initialize the EKF SLAM.

2. Step k: EKF. Perform the EKF for the L UWB antennas, obtaining range and bearing
estimates (ρ̂1,k, β̂1,k), · · · ,(ρ̂L,k, β̂L,k).

3. Step k: Instance instability detection and update. Perform the Instability detection step
and update state and covariance according to the State and covariance update step.

4. Step k: Outlier detection. Perform the Global outliers detection step. Update the fault
and reliability factors.

5. Step k: SLAM Prediction. Perform the Prediction step of the EKF algorithm. If the
VO is available, use it, otherwise, use the agent pose estimation from the auxiliary 2D
EKF (this check is performed by a switching observer).

6. Step k: SLAM Correction with robust Kalman gain. Perform the Correction step of the
EKF Algorithm with the modified Kalman gain for resilient sensor fusion if the VO is
available, otherwise, skip this step (this check is performed by a switching observer).

7. Set k = k+1 and return to item 2.

□

The sensor fusion is performed through the EKF-SLAM algorithm, fusing visual odome-
try with the UWB range measurements in order to provide the robot with an estimate of its
pose and an estimate of the detected antennas position. The details of the multi-sensor fusion
architecture will be described in detail in Section 4.2.
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3.3.3 Multiple vision sensor fusion

A visual-based localization system uses various kinds of frames (e.g., RGB, IR) to estimate
the pose of the agent using different techniques, e.g., Visual Odometry, where the agent’s
motion is inferred by tracking relevant features in the environment. The proposed sensor
fusion architecture is based upon the hypothesis that there are several visual odometry
systems available for the agent.

The architecture design is based upon the following formal definition.

Definition 1 A visual position source like visual odometry S is a system that, equipped with
a visual sensor, provides position samples pS ,k at a rate fS and at time-step k.

The Definition 1 is formulated to cover a wide range of devices and algorithms, as long as
they can be interfaced to provide formatted output data for position samples as described in
Equation (3.1). The following assumption defines the operational context of this work.

Assumption 1 There are n visual data sources available, all with the same data rate fs where
each of them provides information on its functioning state at each time-step k: si,k ∈ {0,1}
for i = 1, . . . ,n.

si,k = 0 means that at time k the i-th sensor is not working, whereas si,k = 1 means the
opposite. Let F : R→R be a filtering operator, and B : R2n×Rn→R2 be the blending map.
The main steps of the approach are summarized as follows: each stage integrates sample
buffers, whose update operations are not explicitly coded due to space and clarity constraints.

1. Initialization. Set k = 0 and i = 0.

2. Pre-filtering. Step i, step k. Perform the pre-processing on the samples by a proper
filtering algorithm:

∆i,k← pSi,k− pSi,k−1

∆i, f ,k←

[
F(∆i,x,k)

F(∆i,y,k)

]

3. Set i = i+1 and return to item 2 if i≤ n, otherwise skip to item 4.

4. Blending. Step k. The blending map B is used to perform blending as follows:

∆b,k←B(∆1, f ,k, . . . ,∆n, f ,k,s1,k, . . . ,sn,k)

pb,k←

[
F(∆b,x,k)

F(∆b,y,k)

]
+ pb,k−1



96 Methodology Overview

5. Set k = k+1 and i = 0 and return to item 2.

□

The visual sensor fusion is performed using a pre-filtering stage and a blending map-
based algorithm, fusing n visual odometry systems in order to provide the agent with an
estimate of its pose. The details of the multi-sensor fusion architecture will be described in
detail in Section 4.4.

3.3.4 Visual-UWB sensor fusion using deep learning techniques

The problem formulated in Section 3.2.2 for a generic autonomous agent is solved through an
EKF algorithm which uses the range and bearing estimation of each UWB antenna provided
by a set of EKF, one for each UWB antenna and exploiting a deep learning network to
provide a realistic measurement model. The main steps of the approach are summarized as
follows.

1. Training. Train the deep neural network with a dataset acquired from real UWB sensor
measurements.

2. Initialization. Initialize for each tag a EKF and initialize the EKF SLAM.

3. Step k: EKF. Perform the EKF for the L UWB antennas, obtaining range and bearing
estimates (ρ̂1,k, β̂1,k), · · · ,(ρ̂L,k, β̂L,k).

4. Step k: Instance instability detection and update. Perform the Instability detection step
and update state and covariance according to the State and covariance update step.

5. Step k: Outlier detection. Perform the Global outliers detection step. Update the fault
and reliability factors.

6. Step k: SLAM Prediction. Perform the Prediction step of the EKF algorithm. If the
VO is available, use it, otherwise, use the agent pose estimation from the auxiliary 2D
EKF (this check is performed by a switching observer).

7. Step k: SLAM Measurement model. Use the trained deep neural network to predict
the sensor measurements, given the inputs (the predicted agent pose and the predicted
UWB antennas position).

8. Step k: SLAM Correction with robust Kalman gain. Perform the Correction step of the
EKF Algorithm, using the output of the measurement model and using the modified
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Kalman gain for resilient sensor fusion if the VO is available, otherwise, skip this step
(this check is performed by a switching observer).

9. Set k = k+1 and return to item 3.

□

The sensor fusion is performed through the EKF-SLAM algorithm, exploiting deep
learning techniques to compute the measurements model while fusing visual odometry with
the UWB range measurements in order to provide the robot with an estimate of its pose
and an estimate of the detected antennas position. The details of the multi-sensor fusion
architecture will be described in detail in Section 4.3.

3.4 Synthetic sensor data generation

In order to test the algorithms, researchers and developers need big, meticulously annotated
datasets for sensor data. Testing the robot algorithms, such as multi-sensor fusion algorithms,
is more effective when they have more varied material. The issue is that compiling and
labeling databases that could include a few thousand to tens of millions of components takes
a lot of time and is frequently unaffordable. By providing users, developers and researchers
with a diverse set of data that accurately represents the real world, synthetic data can resolve
private concerns and lessen bias. Synthetic datasets are sometimes superior to real-world
data because they are automatically identified and can purposefully include uncommon but
important corner instances.

The use of sensors has become increasingly prevalent in various industries, from health-
care to manufacturing. With the proliferation of sensors comes an abundance of data, which
can be analyzed to gain insights and make informed decisions. However, the collection
and analysis of sensor data can be challenging, especially when dealing with rare events
or situations that are difficult to replicate. To overcome these challenges, researchers have
turned to synthetic sensor data generation using deep learning techniques. This involves using
algorithms to create realistic, simulated sensor data that can be used for a variety of purposes,
including training machine learning models, testing sensor systems, and conducting virtual
experiments.

In this section we present a classical approach to sensor data acquisition and an effective
solution to synthetic data generation exploiting Deep Neural Networks (DNNs) and its
application to UHF-RFID and UWB. We want to focus, especially, on the latest advancements
in synthetic sensor data generation exploiting deep learning techniques. We will discuss
the approach and methodology that have been developed, as well as the challenges and
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limitations that still need to be addressed. Furthermore, in Chapter 4 we will examine the
potential applications of synthetic sensor data generation on two real experiments involving
UltraHigh Frequency Radio Frequency Identification (UHF-RFID) and Ultra Wide Band
(UWB) sensors.

3.4.1 Sensor data acquisition

Autonomous robots rely heavily on sensor data to perceive their environment and make
decisions on how to act within it. However, the process of acquiring sensor data is not always
straightforward and presents several challenges that need to be addressed for successful robot
operation. These challenges can arise from a variety of factors, such as sensor noise, limited
sensor range, and data fusion from multiple sources. In this section, we will discuss the
challenges associated with sensor data acquisition for autonomous robots and explore some
of the solutions that have been developed to address them. By understanding these challenges,
we can gain insight into the complexities of autonomous robot systems and appreciate the
impressive technological advancements that make them possible.

In this section we want to focus on the details about the process of sensor measurements
acquisition especially on the UHF-RFID and UWB sensors that have been used to assess the
performances of the algorithms for multi-sensor fusion for resilient robot perception.

UHF-RFID sensor measurements acquisition

In this section we describe the measurements acquisition for the UHF-RFID system described
in Section UHF-RFID. We mentioned that UHF-RFID sensor consists of a reader and one
or more tags which contain an antenna and a small integrated circuit. The reader emits a
radio signal which is received by the antenna in the tag that responds with a signal that
contains information about the object it is attached to. We performed experiments to acquire
this type of sensor data where the reader has been placed on a unicycle-like robot, moving
around an indoor environment. During the experiment we acquired the phase of the signal
back-scattered from the RFID tag, using the following hardware specification: the reader is
the M6e ThingMagic with an antenna with a power of 25 dBm and collects measured data
with a rate of 15 Hz while the robot moves with a speed of 0.2 m/s. Measurements have been
performed at the frequency of 867 MHz and the tag is type LAB-ID UH107. The row phase
measurement from the UHF-RFID is reported in Figure 3.15. The phase of that signal has a
periodicity of π , as it can be seen from the figure, and it shows a very noisy behaviour.

The raw signal coming from the sensor should be filtered before using it in any perception
algorithm. Specifically, the signal could be processed using a median filter which is a non-
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Fig. 3.15 Raw phase measurement from UHF-RFID tag back-scattered signal.

linear digital signal processing technique used to remove noise from the signal. The main
idea of the median filter is to run through the signal entry by entry, replacing each entry with
the median of neighboring entries. The pattern of neighbors is the window, which slides,
entry by entry, over the entire signal.

The formula for a 1D median filter with a window size of W is:

yi = median(xi−⌊W
2 ⌋
,xi−⌊W

2 ⌋+1, ...,xi+⌊W
2 ⌋
), (3.44)

where yi is the filtered value of the i-th sample, xi is the original value of the i-th sample, and
median is the median function.

Furthermore, in order to smooth out the signal and to remove high-frequency noise, a
moving average can be also used. The filter works by averaging the values of the input
signal over a specific window of time, which can help to reduce the impact of random
fluctuations in the signal. The formula for a moving average filter of length N can be
expressed mathematically as:

yn =
1
N

N−1

∑
i=0

xn−i, (3.45)

where xn represents the input signal to be filtered, yn represents the output signal after filtering,
N is the length of the moving average filter. The formula in (3.45) represents a simple linear
time-invariant filter that computes the average of the current input sample and the N− 1
previous samples. The results of the application of the 1D median filter of window size
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Fig. 3.16 Filtered phase measurement from UHF-RFID tag back-scattered signal.

W = 6 and the moving average filter with length L = 6 for the signal depicted in Figure 3.15,
is reported in Figure 3.16.

UWB sensor measurements acquisition

In this section we describe the measurements acquisition for the UWB system described in
Section UWB. We mentioned that UWB sensor uses short-range radio waves to measure
distance between objects. We performed experiments to acquire this type of sensor data
where the UWB antenna has been placed on a unicycle-like robot, moving around an indoor
environment. During the experiment we acquired the raw range measurements with the UWB
from a UWB anchor as reported in Figure 3.17 (the raw range measurements are reported in
blue).

The raw signal coming from the UWB sensor should be filtered before using it in any
perception algorithm. Specifically, the UWB raw signal has been filtered out with a 6th-order
1D median filter (see Equation (3.44), where window size W = 6) plus a moving average
filter with length L = 5 (see Equation (3.45)). Finally, for the UWB sensor system, the
measurements have been corrected fitting the bias with a smoothing spline methodology.

The results of the application of the filters are depicted in Figure 3.17 (the filtered range
measurements are reported in red). The figure shows how the raw signal has been effectively
filtered. The effect of the moving-average filter is particularly visible in plot between the
2000-th and the 3400-th timesteps, where an high frequency noise is present in the data and
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Fig. 3.17 Comparison between raw and filtered UWB measurements for the three UWBs during an
experiment. The blue curves represent the raw UWB measurements, while the red curves represent the
UWB measurements after applying a 6th-order one-dimensional median filter plus a moving-average
filter and the smoothing spline to fit the bias.

is correctly filtered out. Furthermore the smoothing spline bias correction is visible along the
plot as a variable displacement between the raw and filtered measurements.

3.4.2 Sensor data deep generation

Sensor data deep generation is the process of synthesizing new data using a combination of
sensor inputs. This approach involves training deep learning models to learn the underlying
patterns and relationships between different types of data. By combining these different
sources of information, it becomes possible to generate more accurate and realistic repre-
sentations of the real world. The process of sensor data deep generation, presented in this
section, has been obtained exploiting Convolutional Recurrent Neural Networks (CRNNs).
The model shall be trained on large datasets of multi-modal data to learn the complex patterns
and relationships between different types of data. Once trained, the model has been used to
generate new, synthetic data that closely resembles the real-world data. One of the primary
advantages of sensor data deep generation is its ability to generate more diverse and realistic
data compared to traditional methods. This is because the combination of sensor inputs
and multi-modal information provides a richer source of information for the deep learning
models to learn from, resulting in more accurate and diverse synthetic data. The proposed
network architecture has been exploited to generate UWB and UHF-RFID sensor data.
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Neural Network Architecture

The proposed architecture for time-series data from sensors is a multi-variate CRNN (Convo-
lutional Recurrent Neural Network) that is an extension of the traditional CRNN architecture
designed to handle multiple input signals and variables. Unlike a standard CRNN that takes
a single input signal, a multi-variate CRNN takes multiple input signals and combines them
to learn a joint representation of the data. The input signals in the proposed multi-variate
CRNN can come from a variety of sources, such as multiple sensors, different modalities of
data, or multiple channels of information; in our case, in addition to sensor measurements,
the other inputs to the CRNN are the robot orientation, position and the UHF-RFID and
UWB tag positions. The convolutional layer in the proposed multi-variate CRNN is used
to extract features from each of the input signals independently. This layer has been used
to capture patterns and structures in each of the input signals that are relevant to the task
at hand. The recurrent layer in the proposed network architecture is used to capture the
temporal dependencies between the different input signals. This layer allows the network to
learn the relationships between the different input signals over time, and to model long-term
dependencies between them. By combining the information from multiple input signals,
the proposed network can learn to extract a joint representation of the data that is more
informative than any individual input signal alone. This leads to improved performance
prediction tasks and the novelty presented in this architecture is that the multi-variate CRNN
has been extended to a deep generation task. Fig. 3.18 shows the structure of the multi-modal
CRNN network; here the inputs to the network have been left generic in order to underline
the ability of the network to generalize any kind of sensor data. The CRNN network for n
inputs contains the following:

1. n 1D-Convolution layers: Perform 1D convolution (temporal convolution) calculation
based on the input data. Each convolution layer accepts an input of dimension Ns

(number of time-steps), and the layer consists of 64 output filters with kernel size 2.
For each input a convolution layer is instantiated and, during the training phase, the
convolution coefficients are trained to compute features.

2. n Activation layers: The activation function for these layers is the ReLU function
(Rectified Linear Unit), widely used in neural network and given by:

f (x) = max(0,x)

3. n Max pooling layers: Each feature map’s dimensionality is decreased while the most
crucial data is kept by the spatial pooling. Sub-sampling’s goal is to obtain an input
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representation by cutting down on its dimensions, which aids in lowering overfitting.
The spatial windows size for the Max Pooling layers is 2.

4. n Dropout layers: These layers have been added to prevent overfitting.

5. Concatenate layer: This layer concatenates the inputs from the n convolution layers,
generating a single tensor as a concatenation of all inputs.

6. LSTM layer: The Long Short-Term Memory layer is introduced to simulate long-term
dependencies between the various input signals and to learn the relationships between
them over time. The dimensionality of the output space is 200.

7. Activation layer: The activation function after the LSTM layer is the tanh function
which has been introduced to help mitigating the vanishing gradient problem and
stabilizing the training process since the input and output data is normalized between
-1 and 1. The tanh function is given by:

tanh(x) =
ex− e−x

ex + e−x

8. Dense layer: The convolutional and LSTM layers are merged to a dense (fully con-
nected) layer. The goal of this layer is to flatten the high-level features that are learned
by convolutional and LSTM layers. It has a single output representing the sensor
measurement that has to be generated.

1Input 1

1Input 2

1Input n

.....

LSTM
Output

Convolution layer

ReLU

Max Pooling layer

Concatenate layer

LSTM layer

tanh

Dense layer

Dropout layer

Fig. 3.18 The proposed multi-variate Convolutional Recurrent Neural Network architecture. The
network takes n inputs, each one with dimension Ns (number of time-steps), and has one single output.
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Overfitting

During the training of the CRNN, a method to mitigate the risk of overfitting, which is the
phenomenon whereby the model becomes too specialized to the training data and fails to
generalize well to new data, has been adopted; the employed technique is dropout, which
involves randomly dropping out a proportion of the neurons in each layer during training,
thereby forcing the remaining neurons to learn more robust and independent representations
of the data, and ultimately improving the model’s ability to generalize to new, unseen data.
For the presented network architecture, a dropout layer has been introduced for each input
with a dropout rate of 0.1; the parameter has been chosen after several trainings, showing the
best results.

Loss Function

The goal of training a neural network is to find the parameters (weights and biases) that
minimize the loss function, which means the model is able to make accurate predictions on
the training data. For regression problems, the mean squared error (MSE) loss function is
often used. This function measures the difference between the predicted and true values of
the target variable, and penalizes the model for making large prediction errors. Another loss
function is the Pearson correlation that is used in machine learning and statistical modeling
when the goal is to optimize a model’s predictions to maximize the correlation between
predicted and actual values. This loss function focuses on the strength of the relationship
between the variables, rather than the magnitude of the difference between the predicted and
actual values. In this context, we have chosen a combination of MSE and Pearson correlation
in order to penalize the model for making large prediction errors and, in the meantime, to
maximize the correlation between predicted and actual values. The formula of this loss
function is reported in (3.46):

floss = 1− ∑
m
i=1(yi− ȳ)(ŷi− ¯̂y)√

∑
m
i=1(yi− ȳ)2 ∑

m
i=1(ŷi− ¯̂y)2

+
1
m

m

∑
i=1

(yi− ŷi)
2, (3.46)

where m is the number of samples, yi is the true label for the i-th sample, ŷi is the predicted
label for the i-th sample, ȳ is the mean of the true labels, and ¯̂y is the mean of the predicted
labels. In addition to the loss function, the deep neural network training process also involves
an optimizer, which is responsible for updating the model parameters to minimize the loss
function. The training on the presented CRNN network has been realized using the Adam
optimizer.
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(a) (b)

Fig. 3.19 Training and validation loss for (a) UHF-RFID and (b) UWB.

UltraHigh Frequency Radio Frequency Identification

In this experiment, a UHF-RFID reader, with the antenna pointing towards the ceiling, has
been mounted on a unicycle-like robot rotating around the axis of the antenna; a RFID
passive tag has been mounted on the ceiling in correspondence with the antenna on the robot.
The UHF-RFID reader is able to measure the phase shift φ in the RFID signal back-scattered
by the RFID tag, which is the measurement that we want to generate through the CRNN.

Training results The training data obtained from the acquired sensors consist of multiple
acquisitions (> 30) of about 1 min long time-series for the antenna rotation angle θ (as
it is estimated from the wheels encoder readings), the phase shift φ in the RFID signal
back-scattered by an RFID passive tag mounted on the ceiling of the environment in a known
position (xT r,yT r,zT r) and the phase offset φo depending on the hardware. These data have
been used to train the CRNN on a Intel Core i7-12700H, 2.3GHz, 14 core and 16GB RAM
with an NVIDIA GeForce RTX 3050 Ti GPU. The training time costs around 28 min. The
training and validation loss for 200 epochs of the CRNN are depicted in Figure 3.19a. The
model is not overfitting for the validation loss is decreasing and the gap between training and
validation accuracies are small.

Testing results The trained CRNN network has been tested with real measurements of
the antenna rotation angle θ , the RFID tag position (xT r,yT r,zT r) and the phase offset φo,
as inputs; the output of the network is a deep-generated phase φ that closely resembles the
real-world data, as shown for a single case in Figure 3.20a, where the measured phase is
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(a) (b)

Fig. 3.20 Deep generated sensor measurements for (a) UHF-RFID and (b) UWB.

reported in blue and the generated phase in orange. The tests have been run on a validation
set of real measurements, showing a low average RMSE equals to 0.09 rad.

Ultra Wide Band

In this experiment, a UWB antenna has been mounted on a unicycle-like robot moving in a
cluttered indoor environment (10 m × 6 m), where UWB tags have been placed in known
positions. The UWB antenna is able to read ranges from each UWB tag.

Training results The training data obtained from the acquired sensors consist of multiple
acquisitions (> 50) of about 5 min long time-series for the robot position (xr,yr,zr), the
position of the UWB tag located in known position (xT u,yT u,zT u) and the range measurement
ρ from UWB antenna to tag. These data has been used to train the CRNN on the same
hardware described in Section Training results. The training time costs around 35 min. The
training loss for 20 epochs of the CRNN are depicted in Figure 3.19b. The model is not
overfitting for the validation loss is decreasing and the gap between training and validation
accuracies are small.

Testing results The trained CRNN network has been tested with real measurements of
the robot position (xr,yr,zr) and the UWB tag position (xT u,yT u,zT u), as inputs; the output
of the network is a deep-generated range ρ that closely resembles the real-world data, as
shown for a single case in Figure 3.20b, where the measured range is reported in blue and the
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generated one in orange. The tests have been run on a validation set of real measurements,
showing a low average RMSE equals to 0.06 m.

3.4.3 Measurement data deep generation

Deep learning techniques have brought about a transformative impact on data generation and
manipulation in recent times, including the creation of synthetic sensor data. The ability to
produce vast amounts of diverse and high-quality data holds immense significance across
domains like autonomous driving, robotics, and computer science. The process of generating
synthetic sensor data utilizing deep learning methods entails training a model to generate data
that closely resembles real-world sensor data. This is accomplished by exposing the model
to extensive real-world data, enabling it to discern the inherent patterns and structures within
the data. Once trained, the model can generate fresh data that exhibit comparable quality and
complexity to the original data, while introducing additional variations and noise to enhance
diversity and realism. Noteworthy deep learning techniques such as generative adversarial
networks (GANs), variational autoencoders (VAEs), and recurrent neural networks (RNNs)
have demonstrated remarkable achievements in generating synthetic data for various sensor
types. In this section, deep learning techniques based on Autoregressive Convolutional
Recurrent Neural Networks (CRNN) for Multivariate Time Series Prediction, combined
with a method based on Denoising Autoencoder (DAE) to learn noise characteristics, have
been exploited to generate synthetic sensor data with real world-like noise characteristics.
The model has been trained and validated with real data for Ultra Wide Band (UWB) and
Ultra High Frequency Radio Frequency Identification (UHF-RFID) sensors. The presented
neural network architecture incorporates measurements from sensors and heterogeneous
information with the aim of generating synthetic data that can be used to augment real-world
data. The deep neural network model presented in this section offers researchers a means
to create datasets for algorithm and methodology validation, eliminating the necessity for
costly and time-intensive data collection.

Neural network architecture

The neural network is composed of a CRNN similar to that presented in Section 3.4.2 and of a
Denoising Autoencoder. Denoising autoencoders belong to a specific type of neural network
architecture utilized for unsupervised learning endeavors, particularly in the domains of deep
learning and image processing. Their primary purpose is to eliminate noise or corruption
from input data and reconstruct the original, uncorrupted data. A denoising autoencoder
comprises an encoder and a decoder. The encoder receives the input data, which might be
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corrupted or noisy, and maps it to a lower-dimensional latent space representation. This
latent representation captures the crucial features of the input data. The decoder takes
this latent representation and reconstructs the original data. During the training phase, a
denoising autoencoder is exposed to corrupted versions of the input data and is trained to
minimize the reconstruction error between the corrupted input and the corresponding clean
output. Through this process, the autoencoder learns to extract meaningful features from
the corrupted data and generate a denoised output that closely resembles the original, clean
data. Denoising autoencoders can be employed for feature learning and dimensionality
reduction, whereby the latent space representations learned by the autoencoder can serve as
input features for other machine learning models. In this section we used the DAE model
with the purpose of learning noise characteristics, the architecture is similar to a standard
denoising autoencoder; however, during training, the model is exposed not only to corrupted
versions of the input data but also to various levels and types of noise. This exposure allows
the network to learn the statistical properties of different noise sources. Specifically, the
presented model is able to handle different noise types, including complex and non-Gaussian
noise. In order to capture the noise characteristics, we resorted to a DAE model. In most of

Fig. 3.21 Denoising Autoencoder architecture. The network has 1 multi-dimensional input and 1
multi-dimensional output of the same dimensions.

the cases, the DAE is used to denoise the input data, however, in our approach, we used the
DAE to capture the noise statistical properties. The predicted noise will then be added in the
overall system to the data predicted by the CRNN network, in order to generate a realistic
synthetic sensor measurement.

Figure 3.21 illustrates the structure of the DAE network, where the inputs and outputs
have been left generic to emphasize the network’s ability to generalize to various types of
sensor data. The network has a single multi-dimensional input ỹ of size Ms, the number of
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samples from the measurement temporal sequence. The output ñ has the same dimensionality
as the input. The DAE is composed as follows:

1. Encoder dense layers: These layers takes the inputs and flattens them, reducing their
dimensions. The resulting outputs of this layer are passed to the batch normalization
layer.

2. Batch normalization layers: Batch normalization used here to normalize the activations
of each layer by adjusting and scaling them. This helps in addressing the problem of
changes in the distribution of layer inputs during the training process (internal covariate
shift). This layer has a similar effect to dropout regularization by adding noise to the
network, but it is less computationally expensive.

3. ReLU activation layers: The ReLU function (Rectified Linear Unit) is applied to the
encoder and decoder layers.

4. Latent space dense layer: This layer compresses the representation of the input data,
capturing the essential features and patterns of the input data in a lower-dimensional
representation.

5. Latent space dropout layer: The dropout layer prevent overfitting in latent space.

6. Linear activation layer: Equation (3.47) shows the linear activation function, where
f (x) represents its output and x its input.

f (x) = x. (3.47)

The linear activation function returns the input value as the output without applying
any non-linear transformation.

7. Decoder dense layers: These layers has the purpose of reconstructing the original
version of the input data from the compressed representation in the latent space.

8. Sigmoid activation layer: The sigmoid activation layer integrates the sigmoid function
that is reported in Equation (3.48):

f (x) =
1

1+ e−x , (3.48)

where f (x) is the output of the function, and x is its input. The sigmoid function is a
non-linear activation function that maps the input to a range between 0 and 1. It has
been integrated in the model in order to introduce non-linearities in the outputs.
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Loss function

The proposed DAE network has been designed such that the noise characteristics can be
replicated by the model. In order to train it with this capability we have to define a proper loss
function that could be able to capture the noise statistical properties. Since the goal of training
is to minimize this function, we need to define a loss function that, for the original input
and the generated output, could take into account the spatial information and the frequency
information.

In order to capture the spatial information during the training phase, we resorted to
the MSE that measures the discrepancy between the reconstructed and original inputs. On
the other hand, in order to capture the frequency information, we resorted to the PSE that
emphasizes the frequency domain, capturing the spectral characteristics and patterns in the
data. Furthermore, the combination of MSE and PSE allows for a flexible trade-off between
spatial and frequency domains: by adjusting the weight α in the loss function, the DAE
behavior can be fine-tuned to prioritize either spatial (α = 1) or spectral (α = 0) fidelity,
providing more control over the reconstruction process. The specific formulation of the
chosen loss function, denoted as gloss, is presented in Equation (3.49):

gloss = αMSE+(1−α)PSE, (3.49)

where α ∈ [0,1], and MSE is defined in Equation (3.50).

MSE=
1
s

s

∑
i=1

(ni− n̂i)
2, (3.50)

where s represents the number of samples, ni denotes the true label for the i-th sample,
and n̂i represents the predicted label for the i-th sample.

Finally, PSE is defined in Equation (3.51).

PSE=
1
F

F

∑
j=1
| log10(Strue( j))− log10(Spred( j))|2, (3.51)

where F represents the number of frequency bins, Strue( j) denotes the true power spec-
trum at frequency bin j, and Spred( j) represents the predicted power spectrum at frequency
bin j, computed using the Fast Fourier Transform as reported in (3.52):

Strue( j) =
∣∣FFT (n j)

∣∣2
Spred( j) =

∣∣FFT (n̂ j)
∣∣2 . (3.52)
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Table 3.1 Noise and power spectrum RMSE average over the validation dataset for different
values of α for the UHF-RFID case (lowest RMSE and selected α values in boldface).

α Noise RMSE [rad] Power spectrum RMSE [VRMS]
0.0 0.25956 0.00900
0.2 0.25510 0.01037
0.4 0.19041 0.01171
0.6 0.18815 0.01278
0.8 0.18722 0.01294
1.0 0.16859 0.01313

Hyper-parameters selection

The hyper-parameter selection aims at optimizing the learning process. The chosen optimizer
is the Adam optimizer, whose characteristics and advantages have been already presented
and are also satisfying for the DAE network. Also in this case, in order to identify the optimal
combination of hyper-parameters, we utilized the grid search method. The intervals and step
sizes for the grid search method are as follows: for the number of epochs, the range is set as
[4,50] with a step size of 2. The batch size ranges from 2 to 40 with a step size of 2. The
learning rate ranges from 0.0001 to 0.05 with a step size of 0.001. For β1, the range is set as
[0.3,0.99] with a step size of 0.01, and for β2, the range is also [0.3,0.99] with a step size of
0.01. The grid search algorithm has been run on two different datasets for UHF-RFID and
for UWB. For the hyper-parameter α , we fixed the best hyper-parameters described so far
and analyzed the RMSE between the true and predicted noise signals and the RMSE between
the power spectrum of true and predicted noise. In this analysis, we varied the values of α

in the range [0.0,1.0] with steps of size 0.2 for both the UHF-RFID and UWB cases. For
the UHF-RFID case, Figure 3.22a depicts the real versus predicted noise at different values
for α while Figure 3.22b shows the power spectrum for the real and predicted noise, for
different values of α for a single generated measurement in the validation dataset. In order to
get a better look into the relationship of the α hyper-parameter for the spatial and spectral
fidelity trade-off, Table 3.1 provides the values for the average RMSE between true and
predicted noise and the average RMSE between the power spectrum of true and predicted
noise over all the validation dataset, varying α . From Table 3.1 it can be seen that for the
lower bound (α = 0), the presented model provides the highest noise RMSE and the lowest
power spectrum RMSE: this is consistent with the loss function in Equation 3.49, prioritizing
the spectral fidelity on the optimization process. On the other hand, for the upper bound
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(a) Real noise (black) and predicted noise (colored) for a UHF-RFID measurement.

(b) Power spectrum of real noise (black) and predicted noise (colored) for a UHF-RFID measurement.

Fig. 3.22 Real and predicted noise (top) and power spectrum of the real and predicted noise (bottom)
for UHF-RFID varying the values of the hyper-parameter α for a single measurement in the validation
dataset.
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(α = 1), the model shows the lowest noise RMSE and the highest power spectrum RMSE,
that is also consistent with Equation 3.49.

For the UWB case, Figure 3.23a depicts the real versus predicted noise at different values
for α while Figure 3.23b shows the power spectrum for the real and predicted noise, for
different values of α for a single generated measurement in the validation dataset. As per the

(a) Real noise (black) and predicted noise (colored) for a UWB measurement.

(b) Power spectrum of real noise (black) and predicted noise (colored) for a UWB measurement.

Fig. 3.23 Real and predicted noise (top) and power spectrum of the real and predicted noise (bottom)
for UWB varying the values of the hyper-parameter α for a single measurement in the validation
dataset.

UHF-RFID case, in order to get a better look into the relationship of the α hyper-parameter
for the spatial and spectral fidelity trade-off, Table 3.2 provides the values for the average
RMSE between true and predicted noise and the average RMSE between the power spectrum
of true and predicted noise over all the validation dataset, varying α . As per the UHF-RFID
case, from Table 3.2 it can be seen that for the lower bound (α = 0), the presented model
provides the highest noise RMSE and the lowest power spectrum RMSE: this is consistent
with the loss function in Equation 3.49, prioritizing the spectral fidelity on the optimization
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Table 3.2 Noise and power spectrum RMSE average over the validation dataset for different
values of α for the UWB case (lowest RMSE and selected α values in boldface).

α Noise RMSE [m] Power spectrum RMSE [VRMS]
0.0 0.05669 0.00129
0.2 0.05558 0.00135
0.4 0.05442 0.00146
0.6 0.05426 0.00151
0.8 0.05342 0.00179
1.0 0.05215 0.00250

process. On the other hand, for the upper bound (α = 1), the model shows the lowest noise
RMSE and the highest power spectrum RMSE, that is also consistent with Equation 3.49.

Finally, the selected hyper-parameters for the two datasets are reported in Table 3.3.

Overfitting

In the DAE we resorted to the dropout methodology in order to prevent the risk of overfitting.
For the DAE network architecture, a dropout layer has been integrated in each dense layer
of the network, employing a dropout rate of 0.2. The selection of this specific value for the
dropout rate was done after running several training sessions, allowing us to choose the best
value.

Overall neural network architecture

This section reports the details about the design of the overall neural network architecture.
The first component is the convolutional recurrent neural network that aims to capture the
spatial and temporal dependencies in the data. The input data for the CRNN, in the case of
the UHF-RFID or UWB, can be the antenna position and orientation, the UHF-RFID/UWB
tag position and the phase offset (for the only UHF-RFID sensor). This network is the first to
be trained and, once trained, it is able to generate the sensor measurements ỹ. The generated
data resemble the real measurements and they capture the non-linearities in the sensor model
(such as, e.g., bias) but the CRNN is not able to model the noise characteristics at this stage.
In order to also capture that, we combined the CRNN with a denoising autoencoder. The
DAE takes the sensor measurements ỹ (including L samples) generated by the CRNN as an
input; these inputs are organized as chunks of samples of size Ms such that each input Xi to
the DAE is in the form:

Xi = {ỹi, ỹi+1, . . . , ỹi+Ms}, (3.53)
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Table 3.3 Selected hyper-parameters for the DAE network.

Hyper-parameter Value Sensor type
Epoch 20 UHF-RFID
Batch size 4 UHF-RFID
Learning rate 0.002 UHF-RFID
β1 0.88 UHF-RFID
β2 0.998 UHF-RFID
ε 10−8 UHF-RFID
α 0.6 UHF-RFID
Epoch 20 UWB
Batch size 14 UWB
Learning rate 0.002 UWB
β1 0.9 UWB
β2 0.997 UWB
ε 10−8 UWB
α 0.4 UWB

with i ∈ [1,L−Ms] and ỹi representing the i-th sample for the sensor measurement signal
ỹ. The DAE model is trained right after the CRNN: this is an architectural constraint as
the DAE input Xi relies upon the generated measurements ỹ. Once trained, the DAE model
is able to generate the noise signal ñ that resembles the real noise in terms of spatial and
spectral characteristics. At the final stage, the model combines the signal ỹ generated by the
CRNN with the noise ñ generated by the DAE into ỹnl as follows:

ỹnl = ỹ+ ñ. (3.54)

The overall architecture diagram is depicted in Figure 3.24.

Experiments

In this section, the experiments for the UHF-RFID and UWB cases are reported. The
overall network architecture is composed by a CRNN and a DAE networks, as presented
in Section 3.4.3. The training is divided into two phases: in the first phase, the CRNN is
trained with the appropriate inputs and true values y. Once trained, the CRNN network is
able to generate the signals ỹ that will be used in the second phase of the training by the DAE
network. In that phase, the DAE will take the inputs Xi (as per Equation (3.53)) and the true
values n.
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Fig. 3.24 Overall architecture diagram of the presented deep neural network. The model is a combina-
tion of CRNN and DAE. The legend on the right reports the layers as they appear from left to right in
the left diagram.

In order to ensure a good generalization ability, we designed the training and test samples
in order to assure that they have been drawn from the same underlying distribution. Then,
we used the 80 % of the data for training and the remaining for evaluating the model’s
performance for both the CRNN and DAE networks. Furthermore, we captured temporal
variability in both training and testing samples and randomly shuffled the training data in
order to prevent the CRNN from overfitting to specific temporal patterns present in the
training set. We also captured the spatial and spectral variability in the training and validation
samples when training the DAE network and randomly shuffled the training data in order to
prevent overfitting to specific spatial and spectral patterns present in the training set. Finally,
we also used regularization techniques (dropout as mentioned in 3.4.3) in order to reduce the
networks’ sensitivity to specific training samples and to achieve a more robust generalization
capability.

Validation Metrics

In order to evaluate the ability to generate synthetic data that resemble the real sensor mea-
surements, we resorted to two different metrics in order to assess both the spatial and spectral
consistency of the generated signals. The MSE between the real and generated signal is used
to capture the network ability to generate spatial consistent synthetic measurements as re-
ported in Equation (3.55), where yi represents the i-th sample of the real sensor measurement
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y and ỹnl,i is the i-th sample of the sensor measurement ỹnl generated by the network.

MSE=
1
m

m

∑
i=1

(yi− ỹnl,i)
2. (3.55)

On the other hand, the magnitude-squared coherence (MSC), used as a measure of the
similarities in the frequency content of two signals, is selected to assess the network ability
to generate spectral consistent synthetic measurements. This metric is reported in Equa-
tion (3.56):

MSC( f ) =
|Gyỹnl( f )|2

Gyy( f )Gỹnl ỹnl( f )
, (3.56)

where Gyỹnl( f ) is the cross-spectral density between y and ỹnl , and Gyy( f ), Gỹnl ỹnl( f ) are
the auto spectral density of y and ỹnl respectively at a frequency f . The coherence value at
frequency f ranges between 0 and 1, where 0 indicates no correlation between the signals
at that frequency, and 1 indicates perfect correlation. In the next sections we will be using
the MSC to compute the percentage of frequency bins that have coherence greater than a
threshold.

UHF-RFID

In this experiment, a UHF-RFID reader, with the antenna pointing towards the ceiling, has
been mounted on a element rotating around the axis of the antenna; an RFID passive tag has
been mounted on the ceiling in correspondence with the antenna. The UHF-RFID reader is
able to measure the phase shift φ in the RFID signal backscattered by the RFID tag, which is
the measurement that we want to generate through the presented network. The number of
inputs n is 5, comprising the antenna rotation angle θ , the position (xT r,yT r,zT r) of an RFID
passive tag mounted on the ceiling of the environment and the phase offset φo depending on
the hardware. The number of time-steps for each input to the CRNN network Ns is 25, whilst
the number of time-steps for the input to the DAE network Ms is 300.

Training Results

The training data obtained from the acquired sensors consist of multiple acquisitions (> 30)
of about 1 min long time-series for the n inputs previously defined and the phase shift φ in the
RFID signal backscattered by the RFID passive tag as the output. These data have been used
to train the CRNN on an Intel Core i7-12700H, 2.3GHz, 14 core and 40GB RAM with an
NVIDIA GeForce RTX 3050 Ti GPU. The training time is around 28 min. The training and
validation loss for 200 epochs of the CRNN are depicted in Figure 3.25a. The model is not
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(a) (b)

Fig. 3.25 Training and validation loss for (a) UHF-RFID and (b) UWB for the CRNN model.

(a) (b)

Fig. 3.26 Training and validation loss for (a) UHF-RFID and (b) UWB for the DAE model.

overfitting for the validation loss is decreasing and the gap between training and validation
accuracies is small. Once the CRNN has been trained, it is used to generate the Xi inputs
in order to train the DAE model. The training time, in this phase, is around 22 min. The
training and validation loss for 20 epochs of the DAE model are reported in Figure 3.26a.
Even in this case, the model is not overfitting because the validation loss is decreasing and
the gap between the training and validation accuracies is small.

Validation Results

The trained models have been tested with real measurements of θ ,xT r,yT r,zT r,φo, as inputs;
the output of the network is a deep-generated phase φ that closely resembles the real-world
data, as shown in Figure 3.27 for one UHF-RFID measurement. The phase φ has periodicity
of π and it has been unwrapped in the graphs. In order to show the network ability to
capture the spectral characteristics, we computed the magnitude-squared coherence between
the real and generated measurements at different frequencies. The results are reported
in Figure 3.28 for the reference measurement shown in Figure 3.27. In order to have a
comprehensive validation of the proposed methodology, we used the network to generate 20
UHF-RFID measurements and computed the average for both the MSE and MSC metrics.
Regarding the MSC, we computed the percentage of the generated measurements showing
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Fig. 3.27 Real and deep generated phase measurements for UHF-RFID. The real measurements are
depicted in black, while the generated measurements are depicted in red.

Fig. 3.28 Semi-logarithmic plot of the magnitude-squared coherence between the real and generated
phase measurements for UHF-RFID.

a magnitude-squared coherence value greater than a threshold. The chosen thresholds are
(0.5,0.6,0.7,0.8,0.9), from the lowest to the highest coherence value, and are reported in
Table 3.4. From this analysis, we can prove the validity of the presented method that shows a
small average MSE between the real and generated measurements, that gives us the evidence
of how the model is able to produce spatio-temporal measurements that are coherent with the
real ones. On the other hand, a high percentage of deep generated measurements (>70 %)
present a high level of coherence (> 0.9), proving that the system is also able to capture the
spectral characteristics with a high fidelity.
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Table 3.4 Average for the mean squared error and percentage of measurements presenting
different thresholds of coherence for 20 UHF-RFID deep-generated measurements.

Metrics Value
MSE 0.028 rad
MSC (> 0.5) 82.12 %
MSC (> 0.6) 78.81 %
MSC (> 0.7) 77.48 %
MSC (> 0.8) 76.82 %
MSC (> 0.9) 74.83 %

UWB

In this experiment, a UWB antenna has been mounted on a unicycle-like robot moving in a
cluttered indoor environment (10 m × 6 m), where UWB tags have been placed in known
positions. The UWB antenna is able to read ranges from each UWB tag. The number of
inputs n is 6, comprising the robot position (xr,yr,zr) and the position of the UWB tag
located in known position (xT u,yT u,zT u). The number of time-steps for each input to the
CRNN network Ns is 25, whilst the number of time-steps for the input to the DAE network
Ms is 400.

Training Results

The training data obtained from the acquired sensors consist of multiple acquisitions (> 50) of
about 5 min long time-series for the previously defined n inputs and the range measurement ρ

from UWB antenna to tag as the output. These data have been used to train the CRNN on the
same hardware described in Section 3.4.3. The training time is around 35 min. The training
loss for 20 epochs of the CRNN is depicted in Fig. 3.25b. The model is not overfitting as the
validation loss is decreasing and the gap between training and validation accuracies is small.
Once the CRNN has been trained, it is used to generate the Xi inputs in order to train the
DAE model. The training time, in this phase, is around 29 min. The training and validation
loss for 20 epochs of the DAE model are reported in Figure 3.26b. In this case, also, the
model is not overfitting because the validation loss is decreasing and the gap between the
training and validation accuracies is small.

Validation Results

The trained models have been tested with real measurements of (xr,yr,zr,xT u,yT u,zT u), as
inputs; the output of the network is a deep-generated range ρ that closely resembles the
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Fig. 3.29 Real and deep generated range measurements for UWB. The real measurements are depicted
in black, while the generated measurements are depicted in red.

Fig. 3.30 Semi-logarithmic plot of the magnitude-squared coherence between the real and generated
range measurements for UWB.

real-world data, as shown in Figure 3.29 for one UWB measurement. In order to show the
network ability to capture the spectral characteristics, we computed the magnitude-squared
coherence between the real and generated measurements at different frequencies. The results
are reported in Figure 3.30 for the reference measurement shown in Figure 3.29. In order
to have a comprehensive validation of the proposed methodology, we used the network to
generate 30 UWB range measurements and computed the average for both the MSE and MSC
metrics. Regarding the MSC, we computed the percentage of the generated measurements
showing a magnitude-squared coherence value greater than a threshold as in Section 3.4.3 as
reported in Table 3.5. As per the UHF-RFID case, we can prove the validity of the presented
method that shows a small average MSE between the real and generated range measurements,
that gives us the evidence of how the model is able to produce spatio-temporal measurements
that are coherent with the real ones. On the other hand, a high percentage of deep generated
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Table 3.5 Average for the mean squared error and percentage of measurements presenting
different thresholds of coherence for 30 UWB deep-generated measurements.

Metrics Value
MSE 0.0029 m
MSC (> 0.5) 83.58 %
MSC (> 0.6) 82.09 %
MSC (> 0.7) 78.60 %
MSC (> 0.8) 76.61 %
MSC (> 0.9) 73.13 %

measurements (>70 %) present a high level of coherence (> 0.9), proving that the system is
also able to capture the spectral characteristics with a high fidelity.

3.5 Summary

In this chapter we presented the overview of the methodology for the multi-sensor fusion
for resilient robot perception. First in Section 3.1, we introduced the basics to characterize
the autonomous systems that have been used to describe the methodology: the agent, the
robot and the sensor configuration. For the sensor configuration, we divided the dissertation
between proprioceptive and exteroceptive sensors, emphasizing the differences between the
two categories and presenting the sensors that have been used in the experiments (that will be
presented in Chapter 5). Then, we described the resilient perception subsystem in Section 3.2,
highlighting two specific problems of robotic perception: localization and SLAM. For the
localization we addressed and presented the problem of global resilient localization, whilst
for the SLAM, we have set the methodology for a resilient SLAM using UHF-RFID tags,
using TriLateration UHF-RFID tags and using UWB for a unicycle-like robot. Furthermore,
we have set the methodology for a resilient SLAM using UWB and Visual Odometry for an
autonomous agent.

Subsequently in Section 3.3, we presented different multi-sensor fusion architectures to
cope with Odometry-RFID sensor fusion, Visual-UWB sensor fusion and multiple vision
sensor fusion. Finally, in Section 3.4 we presented an overview of traditional sensor data
acquisition methodologies, also focusing on sensor measurements filtering, and sensor data
deep generation. In this last section we presented an approach that involves training deep
learning models to learn the underlying patterns and relationships between different types of
data. By combining these different sources of information, it becomes possible to generate
more accurate and realistic representations of the real world. The process of sensor data deep
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generation, presented in that section, has been obtained exploiting Convolutional Recurrent
Neural Networks (CRNNs) and, with that, we generated UWB and UHF-RFID sensor data
that resemble real world sensor data. As final development, we also presented a new deep
neural network model as a combination of CRNN and DAE. This network is able to perform
even better than the CRNN alone, characterizing the noise spectrum and making it able to
perform a realistic deep generation of sensor measurements.





Chapter 4

Multi-sensor fusion for resilient robot
perception

Robot perception is a crucial aspect of robotic systems, allowing robots to understand their
environment and interact with it effectively. However, in many real-world scenarios, the
perception of a single sensor can be limited, unreliable, or even corrupted. To overcome these
challenges, multi-sensor fusion has become an increasingly popular approach to improve
the accuracy and robustness of robot perception. By combining data from multiple sensors,
robots can gain a more complete and accurate understanding of their environment, enabling
them to navigate, interact, and perform complex tasks with greater reliability and resilience.
In this chapter, we will explore the concept of multi-sensor fusion and its applications in
resilient robot perception. Specifically, we will introduce new techniques to achieve resilient
multi-sensor fusion to odometry, visual odometry and range sensors (RFID and UWB). In
Chapter 3 we discussed the different types of sensors commonly used in robotics and the
challenges associated with fusing their data, giving the theoretical basis for the multi-sensor
fusion techniques based on resilience that will be presented in this chapter. The results and
application of the presented techniques will be discussed in Chapter 5.

4.1 Odometry-RFID resilient multi-sensor fusion

In this section a resilient multi-sensor fusion system will be presented. In particular, we
focused on a SLAM problem using UHF-RFID tags for a unicycle-like robot. The system,
comprising a unicycle-like robot mounting a UHF-RFID antenna on top of it has been
already presented and described in Section Resilient SLAM using UHF-RFID tags for a
unicycle-like robot. The multi-sensor fusion architecture, with an overview of the main
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steps of the approach has been presented in Section 3.3.1, where we stated that the resilient
SLAM problem will be solved through an EKF algorithm which uses the range and bearing
estimation of each detected UHF-RFID tag provided by a set of MHEKF, one for each tag.
Here we want to focus on the details about the methodology and algorithm.

4.1.1 Range and bearing estimation

Each tag position with respect to the robot is estimated through a Multi-Hypothesis Extended
Kalman Filter (MHEKF) that fuses the phase measurements with the odometry readings as
described in [150]. The proposed algorithm, for each tag i, initializes nM EKF instances
ℓ = 1,2, . . . ,nM, each one with a different value of the range, since for the periodicity
of the RFID phases, several ranges correspond to the same value of a given measured
phase. Then, in each EKF instance ℓ, the a priori estimate for range and bearing and the
corresponding covariance matrix is computed. The correction step of the EKF algorithm is
applied independently in each instance and finally for each instance ℓ two metrics are created
and then used to compute its weight. Instances with a too small weight are moved to cycles
corresponding to the current phase measurement not covered by other instances. Finally, the
estimates ρ̂i,k and β̂i,k are taken from the best EKF instance (i.e. by the EKF instance with
larger weight). The best EKF instance can be seen as a sensor able to measure the range and
the bearing of a specific tag with a particular noise and fault rate associated to it.

Using the best EKF instance ℓ however leads to problems related to the choices of ℓ that
can change from one time step to another, given that the weight of the instances change over
time. One problem is that these switches between instances strongly affect range and bearing
estimations as shown in Figure 4.1. This can introduce big differences between consecutive
measurements and a method to cope with this problem, and with the problem related to the
frequent switches between instances with similar weight, must be designed. This will be
considered in Section 4.1.3.

The overall algorithm, for a single tag i (the i subscript has been omitted), is summarized
in the Algorithm 1:

Algorithm 1 Multiple Hypothesis EKF

Initialization. Initialize nM EKF instances.
Step k: Prediction and Correction. Perform the prediction and correction step. Handle the
case of non positive range estimates.
Step k: Weighing Step. Determine the weight wℓ

k of each EKF instance ℓ= 1,2, . . . ,nM.
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Fig. 4.1 Multi-Hypothesis Extended Kalman Filter execution: triangles represent the estimates
produced by the different EKF instances, the selected instances are depicted as bigger triangles and
the circle with the segment represents the robot position and heading. A switch between instances is
visible from time step 146 (brown instance selected) to time step 147, where the blue instance selected
provides an effective estimate of the true tag position, indicated by a red star in (2,1).

Step k: EKF instance cycle transfer. If wℓ
k is less than a threshold (e.g. 10−13), set

ρ̂ℓ
k+1 =−

1
2K φk+1 +µ

λ

2 , where µ is a cycle not covered by other instances.
Step k estimate. Take as final estimates ρ̂k and β̂k, the ones provided by the EKF instance
with the largest weight.
Set k = k+1 and return to 2. □

4.1.2 The Simultaneous Localization And Mapping algorithm.

For each tag i in the environment, the algorithm described in Section Range and bearing
estimation is initialized and executed. As an output at each time step k, the estimated
ranges and bearings (ρ̂1,k, β̂1,k), · · · ,(ρ̂L,k, β̂L,k) are computed for the L features (i.e. tags).
These estimations are then available to perform a simultaneous localization and mapping
algorithm with a note: each estimated range and bearing couple can come uniquely from its
corresponding tag. This leads to a main simplification for the data association as (ρ̂i,k, β̂i,k)
(i = 1,2, · · · ,L), regarded to as a measurement of feature i, is uncorrelated to any other feature
j ( j ̸= i). The SLAM algorithm adopted in this work uses an Extended Kalman Filter (EKF).
The robot pose at time k is (xr,k,yr,k,θk), so the state vector, also including tag positions to
map the features in the environment, is:

xk = [xr,k,yr,k,θk,xT1,k,yT1,k, · · · ,xTL,k,yTL,k]
T
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The dynamics of the system is:

xk+1 =



xr,k +uk cos(θk)

yr,k +uk sin(θk)

θk +wk

xT1,k

yT1,k
...

xTL,k

yTL,k


(4.1)

and will be synthetically referred to in this dissertation by

xk+1 = f (xk,ue
k,w

e
k,nR,k,nL,k), (4.2)

where ue
k and we

k come from (2.8) and nR,k and nL,k have been already defined before (2.8).
The (3+2L)× (3+2L) Jacobian matrix Fk of the state dynamics with respect to the state is
defined as follows:

Fk =
∂ f
∂xk

∣∣∣∣
x=x̂k

=



1 0 −ue
k sin(θ̂k) 0 0 0

0 1 ue
k cos(θ̂k) 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

. . . 0
0 0 0 0 0 1


(4.3)

The (3+2L)×2 Jacobian matrix with respect to the encoder noises nR,k and nL,k is given by:

Wk =
∂ f
∂uk

∣∣∣∣
x=x̂k

=



0.5cos(θ̂k) 0.5cos(θ̂k)

0.5sin(θ̂k) 0.5sin(θ̂k)
1
d − 1

d
0 0
...

...
0 0


(4.4)
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When a new range and bearing measurement with the robot in state (xr,k,yr,k,θk) and the tag
in position (xTi,k,yTi,k) is available, it can be expressed as follows:

h(xk) =

[ √
(xr,k− xTi,k)

2 +(yr,k− yTi,k)
2

θk− atan2(yTi,k− yr,k,xTi,k− xr,k)

]
(4.5)

When measurements from L tags are available, (4.5) becomes a vector whose 2L elements
contain the range and bearing from the L tags. The Jacobian Hk of this measurement function
with respect to the state is a 2L× (3+2L) matrix given by:

Hk =
∂h
∂xk

∣∣∣∣
x=x̂−k

=

a1
d1

b1
d1

0 −a1
d1
−b1

d1
0 · · · 0 0

b1
d2

1
− a1

d2
1

1 − b1
d2

1

a1
d2

1
0 · · · 0 0

...
...

...
...

...
... . . . ...

...
aL
dL

bL
dL

0 0 0 0 · · · −aL
dL
−bL

dL
bL
d2

L
−aL

d2
L

1 0 0 0 · · · −bL
d2

L

aL
d2

L


(4.6)

where:

ai = x̂−r,k− x̂−Ti,k

bi = ŷ−r,k− ŷ−Ti,k

di =
√
(x̂−r,k− x̂−Ti,k

)2 +(ŷ−r,k− ŷ−Ti,k
)2.

The EKF-based SLAM algorithm can be summarized as in Algorithm 2.

Algorithm 2 The Extended Kalman Filter for Simultaneous Localization And Mapping

Initialization. Let ρTi,0,βTi,0 be the range and bearing measurements for the ith tag at time
0. Assign the initial estimates:

x̂r,0 = 0

ŷr,0 = 0

θ̂0 = 0

x̂Ti,0 = ρTi,0 cos(θ̂0−βTi,0)

ŷTi,0 = ρTi,0 sin(θ̂0−βTi,0)
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with i = 1, · · · ,L.
Let k = 0. Initialize the (3+ 2L)× (3+ 2L) covariance matrix Pk of the estimates as
follows:

P0 =



03×3 03×2 · · · · · · 03×2

02×3 P0,T1 02×2 · · · 02×2
... 02×2 P0,T2 · · ·

...
...

... · · · . . . ...
02×3 · · · · · · · · · P0,TL


.

The initial state of the robot is exactly known by definition, since the reference frame
adopted by the robot is fixed with the origin in its initial position with the x-axis in the
robot direction, so the block of P0 referring to the robot pose is 03×3. Even if the reference
frame is fixed with the origin in its initial position, it is possible to generalize and include
the real robot location within an external reference frame. For the tag observations P0 has
L blocks 2×2 in the diagonal P0,Ti:

P0,Ti = FTi,0 PρTi,0,βTi,0
FT

Ti,0,

where FTi,0 is the Jacobian matrix of xTi,0 and yTi,0 with respect to ρTi,0 and βTi,0:

FTi,0 =

[
cos(βTi,0) −ρTi,0 sin(βTi,0)

−sin(βTi,0) −ρTi,0 cos(βTi,0)

]
,

and PρTi,0,βTi,0
is the 2× 2 covariance matrix related to the EKF selected instance in the

MHEKF for the Ti tag at timestep 0.
Prediction step. At each time step k, compute the a priori estimates based on equation
(4.1):

x̂−r,k+1 = x̂r,k +ue
k cos(θ̂k)

ŷ−r,k+1 = ŷr,k +ue
k sin(θ̂k)

θ̂
−
k+1 = θ̂k +we

k

x̂−Ti,k+1 = x̂Ti,k

ŷ−Ti,k+1 = ŷTi,k



4.1 Odometry-RFID resilient multi-sensor fusion 131

with i = 1, · · · ,L and where ue
k and we

k depend on the encoder readings. Compute the
covariance matrix of the obtained estimates:

P−k+1 = FkPkFT
k +WkQkW T

k , (4.7)

where Fk and Wk are, respectively, the Jacobian matrices of the state dynamics with respect
to the state (4.3) and to the encoder noise (4.4). The process model covariance matrix Qk

is a diagonal matrix with KR|ue
R,k| and KL|ue

L,k| on the diagonal.
Correction step. Let zk+1 be the 2L-dimensional vector of measurements available at time
step k+1, defined as follows:

zk+1 =


ρ̂T1,k+1

β̂T1,k+1
...

ρ̂TL,k+1

β̂TL,k+1

 .

The expected measurement at this stage is ẑ−k+1 = h(x̂−k+1). Hence the correction step of
the filter is given by:

x̂k+1 = x̂−k+1 +Kk+1nk+1,

where nk+1 is the measurement residual at time k+1:

nk+1 = zk+1− ẑ−k+1, (4.8)

and
Kk+1 = P−k+1HT

k+1(Cobs,k+1)
−1 (4.9)

is the Kalman gain, Hk+1 is the Jacobian matrix of the measurements with respect to the
state in (4.6) and Cobs,k+1 is the 2L×2L covariance matrix associated to the observation
vector zk+1, defined as follows:

Cobs,k+1 = Hk+1P−k+1HT
k+1 +Rk+1, (4.10)
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where Rk+1 is the 2L×2L measurement model covariance matrix constructed following
the real noise statistics as:

Rk+1 =


PρT1,k+1,βT1,k+1

0 · · · 0

0 . . . 0
... 0
0 · · · PρTL,k+1,βTL,k+1

 ,

where PρTi,k+1,βTi,k+1
is the 2×2 covariance matrix related to the EKF selected instance of

the MHEKF for the Ti tag at timestep k+1. The covariance matrix is finally updated as
follows:

Pk+1 = (I−Kk+1Hk+1)P−k+1, (4.11)

with I the (3+ 2L)× (3+ 2L) identity matrix. In this dissertation, however we chose
the Joseph stabilized version of the covariance correction equation in (4.11) that is more
numerically stable because it guarantees the symmetry and positive definiteness of Pk+1 as
long as P−k+1 is symmetric and positive definite as suggested in [151]:

Pk+1 = (I−Kk+1Hk+1)P−k+1(I−Kk+1Hk+1)
T +

+Kk+1Rk+1KT
k+1. (4.12)

□

4.1.3 Dealing with Multi-Hypothesis EKF instance changes.

As already mentioned in Section 4.1.1, the Multi-Hypothesis EKF works with a specific
number of EKF instances (10 or 20 are enough to cover the set of all possible cycles), each
one initialized on a different cycle corresponding to the initial phase measurement. The
instance with larger weight will be chosen to provide the estimates ρ̂i,k and β̂i,k (i.e. the ith

tag measurements used by the EKF-SLAM algorithm). At each timestep, the choice of the
instance could change. When this happens, the range and bearing estimates may be affected
by a sudden change. These instance changes are usually caused by an instance stabilization
process intrinsically operated by the multiple EKF while selecting the hypothesis which
best fits with the measurements. From a SLAM point of view, this behavior can be seen
as a condition to initialize a new feature (i.e. another possible tag position in the map) and
should be managed with a proper algorithm for partial reinitialization. In order to do so,
a methodology to determine if an instance can be considered as stable is proposed in this
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section. For a single Multi-Hypothesis EKF, given the ℓ= 1,2, . . . ,nM instances, let ℓ̂ be the
instance with the largest weight at time k, ℓ̂ is stable at time k if:

î j = ℓ̂,∀ j ∈ [k− st +1,k], (4.13)

where î j is the instance with the largest weight at time j and st is a positive integer to be
properly selected.
The instance ℓ̂ is considered unstable if equation (4.13) is not satisfied for it. This method is
applied for all the L Multi-Hypothesis EKFs.

The EKF-SLAM with selective tag state estimation reset

Instability detection step. Perform a check on the stability over the L Multi-Hypothesis
EKF instances with the largest weight according to the equation (4.13). If one or more
unstable instances are there, then proceed to the next step, otherwise cycle over the instability
detection step.
State and covariance update step. If the instance i is marked as unstable at time step k, the
state vector and the covariance matrix of the EKF-SLAM must be updated according to the
following:

x̂Ti,k = x̂r,k +ρTi,k cos(θk−βTi,k)

ŷTi,k = ŷr,k +ρTi,k sin(θk−βTi,k). (4.14)

The other elements of the state vector are left unchanged as no reset is needed neither in
the robot state nor in the tag states which are not affected by instance instability. For the
covariance matrix the assumption that ρTi,k and βTi,k are considered as real measurements has
been made. These measurements have their own covariance matrix taken from the multiple
EKF and we can assume that they are independent both from the robot pose and the other
tags coordinates. Given the previous assumptions, we can define z̃ = [ρTi,k,βTi,k]

T as the
range and bearing estimation vector for the Ti tag that has to be reinitialized. Furthermore,
if x̃k is the EKF-SLAM vector without the coordinates of tag Ti and ỹ = [x̂Ti,k, ŷTi,k]

T is the
vector of the estimate of the tag coordinates, we can define the covariance matrix of the
extended state vector [x̃, z̃, ỹ]T as follows:

Pext =

 Px̃x̃ 0[3+2(L−1)]×2 Px̃ỹ

02×[3+2(L−1)] Pz̃z̃ Pz̃ỹ

Pỹx̃ Pỹz̃ Pỹỹ

 ,
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where:

• Px̃x̃, is the [3 + 2(L− 1)]× [3 + 2(L− 1)] covariance matrix of x̃ obtained by the
covariance matrix P of the EKF SLAM algorithm by deleting the two rows and
columns referred to the tag which has to be reinitialized,

• Px̃z̃ = PT
z̃x̃ = 0[3+2(L−1)]×2 is the covariance matrix of x̃ and z̃ that is considered null as

the measurements are independent from the state,

• Px̃ỹ = PT
ỹx̃ = Px̃x̃FT

x̃ , is the [3+2(L−1)]×2 covariance matrix of x̃ and ỹ,

• Pỹz̃ = PT
z̃ỹ, is the 2×2 covariance matrix of ỹ and z̃,

• Pỹỹ = Fx̃Px̃x̃FT
x̃ +Fz̃Pz̃z̃FT

z̃ , is the 2×2 covariance matrix of ỹ,

• Pz̃z̃, is the 2×2 covariance matrix of z̃ given by the Multi-Hypothesis EKF,

where Fx̃ and Fz̃ are the Jacobian matrices of the relations (4.14) with respect to x̃ and z̃,
respectively:

Fx̃ =

[
1 0 −ρTi,k sin(θk−βTi,k) 0 . . . 0
0 1 ρTi,k cos(θk−βTi,k) 0 . . . 0

]
,

Fz̃ =

[
cos(θk−βTi,k) ρTi,k sin(θk−βTi,k)

sin(θk−βTi,k) −ρTi,k cos(θk−βTi,k)

]
.

The EKF-SLAM covariance matrix P, after the reinitialization of tag Ti position estimate, is:

P =

[
Px̃x̃ Px̃ỹ

Pỹx̃ Pỹỹ

]
,

where the order of rows and columns could be different from the previous formula according
to the Ti tag coordinates positions in the EKF-SLAM state vector. The state and covariance
update step shall be run for all the instances marked as unstable. □

4.1.4 Resisting the effects of outliers with resilient EKF-SLAM through
hypothesis test and robust estimation

The range and bearing estimation through Multi-Hypothesis EKF is affected by outliers
that do not fulfill the assumed stochastic model of extended Kalman filter, so this can be a
potential problem for parameters estimation as also mentioned in [152]. In order to resist
the effects of the outliers, a resilient extended Kalman filter has been designed. The novel



4.1 Odometry-RFID resilient multi-sensor fusion 135

filter includes a module to detect the presence of one or more outliers in the measurements.
If outliers are there, the robust estimation is designed using a modified version of IGGIII
scheme (Institute of Geodesy and Geophysics III) based on statistic test of the normalized
residual. Furthermore, a fault detection algorithm has been implemented in order to exclude
potentially faulty sensors (i.e. wrong MHEKF estimates) from the SLAM algorithm.

Global outliers detection. According to Section 4.1.2, the observation is modeled by a
Gaussian distribution with mean and covariance ẑ−k and Cobs,k, respectively. So the probability
density function can be written as:

P(zk) = N(zk; ẑ−k ,Cobs,k)

=
exp
(
−1

2(zk− ẑ−k )
T (Cobs,k)

−1(zk− ẑ−k )
)√

(2π)2L|Cobs,k|
,

(4.15)

where |Cobs,k| is the determinant of Cobs,k. If some outliers in the observation are there
or if the Gaussian distribution of the observation noise is contaminated with some other
distributions, the equation (4.15) will no longer hold and this means that some violations to
the assumption or modelling errors could exist. Against a potential measurement outlier, a
check if the actual observation is compatible with the assumed model has to be done. The
null hypothesis H0 test is:

H0: No observation zi, i = 1, · · · ,2L is affected by outliers.

The equation (4.15) is used as the relevant null distribution which holds under the assumed
model and twice the minus exponent in (4.15) represents the relevant test statistic. The test
statistic term is the judging index to detect the modelling errors and this is the square of the
Mahalanobis distance from observation zk to its mean ẑ−k as deduced in [153]:

γk = M2
k =

(√
(zk− ẑ−k )

T (Cobs,k)−1(zk− ẑ−k )
)2

= (zk− ẑ−k )
T (Cobs,k)

−1(zk− ẑ−k ), (4.16)

where Mk is the Mahalanobis distance at time step k. The distribution of the test statistic
under the null hypothesis is decided so, assuming the null hypothesis is true, γk should be
Chi-square distributed with 2L degrees of freedom. In order to design the statistical test a
probability threshold α is needed, below which the null hypothesis will be rejected. The
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Table 4.1 Hypothesis test

Decision H0 true H0 false
Accept H0 correct Type II error
Reject H0 Type I error correct

α-quantile χα of the Chi-square distribution is predetermined so that:

P(γk > χα) = α, (4.17)

where P(γk > χα) is the probability of γk being larger than χα and this should be small as
α . Substituting the actual observation z̃k, we obtain the actual judging index γ̃k, and if this
is larger than the α-quantile, the null hypothesis can be rejected and we are confident that
one or more outliers occur in the observation as also described in [154]. The null hypothesis
H0 test, being a statistic test, is always accompanied by the probability errors (Type I and
Type II errors) with respect to the significance level and the power of a test as in Table 4.1 as
suggested in [155]. These kinds of errors cannot be minimized at the same time: studying
how to balance these two types of errors is a good tuning parameter for the filter resiliency.
Kalman gain scaling. The global outliers detection gives a methodology to understand if
the model does not conform with the specifications, although it does not find which are the
outliers in the measurements. The alternative hypothesis to H0 is that there is at least one
outlier in one known observation [156]:

H(i)
A : The observation zi for some fixed i is an outlier.

The decision can be based on the value of the normalized measurement residual for the
observation i at the time step k:

wk,i =
nk,i√cnini

,

where nk,i is the ith element of the measurement residual as in (4.8), cnini denotes the ith

diagonal element of Cobs,k given in (4.10). If H0 holds true, then wk,i ∼ N(0,1) as derived
in [156]. If an observation i at timestep k is affected by an outlier, the covariance should be
inflated and this can be done acting on the Kalman gain Kk. The robust gain matrix factor
of Kalman filter K̃ ji (where the time step k has been omitted to make clearer notations from
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now on) is:

K̃ ji =



K ji, wi ≤ a0

K ji
a0
wi

(
a1−wi
a1−a0

)3
, a0 < wi ≤ a1

0, wi > a1,

(4.18)

where j is the jth element in the state vector and a0, a1 are the robust constants of the Kalman
gain, usually determined based on the objective requirements. In (4.18) the factor a1−wi

a1−a0
is

raised to third power, which differs from the implementation of the IGGIII scheme presented
in [152] where the same factor is raised to the second power. The reason for this choice is that
we want to further decrease the robust Kalman gain factor when the normalized measurement
residual is in the range (a0,a1]. Moreover the measurement vector is composed of range and
bearing per each tag, estimated by one Multi-Hypothesis EKF as reported in Section 2.1.4.
This leads to the assumption that if the measurement residual related to the range or bearing
measurement of the same tag (same multiple EKF) is such that wi > a1, we set K ji to 0.
Sensor fault detection. The robust gain matrix factor of Kalman adjustments allows a
further consideration regarding the measurement reliability associated to a specific sensor
providing the couple (ρ̂i,k, β̂i,k). From this point of view the equation (4.18) can give a further
information regarding the number of outliers detected and one can relate its frequency to
the reliability of the sensor itself. In particular for the tth tag sensor, one can define the
number of times an outlier is detected subsequentially, weighing the outlier whose normalized
measurement residual wi falls within the range (a0, a1) with a smaller weight compared to
the one falling in the range [a1, ∞):

η f ,t(k) =
k

∑
n=k̄

gn, (4.19)

with k̄ being the first timestep when the outlier is detected (with k > k̄) and:

gn =



1, a0 < wi < a1

ḡ, wi ≥ a1

0, otherwise,

(4.20)

where ḡ is a proper weight with ḡ > 1. The expression in (4.19) can be used in order to assess
how much a sensor is faulty. Based on this fault factor and on the reliability factor defined as
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follows:
ηr,t(k) = k− k̃, (4.21)

when no faults are there ∀k ∈ [k̃,k] with k̃ the first timestep when the sensor presents no
faults, a policy can be designed in order to shutdown the sensor or to restart it when its faults
stop increasing. When a tag sensor presents a first fault, the weighted number of faults is
computed according to (4.19). When η f ,t(k) becomes greater than the threshold Tf , that tag
sensor t is shutdown. Similarly, after a shutdown when a tag sensor becomes reliable for
a proper amount of time Tr (i.e. ηr,t(k), computed as in (4.21), becomes greater than the
threshold Tr), that tag sensor t is restarted. □

4.2 Visual-UWB resilient multi-sensor fusion

In this section a resilient multi-sensor fusion system will be presented for visual odometry
and UWB sensors. In particular, we focused on a SLAM problem using UWB antennas for a
generic agent moving on an indoor environment. The system, comprising an agent mounting
a UWB antenna on top of it has been already presented and described in Section 3.2.2. The
multi-sensor fusion architecture, with an overview of the main steps of the approach has
been presented in Section 3.3.2, where we stated that the resilient SLAM problem will be
solved through an EKF algorithm which uses the range and bearing estimation of each UWB
antenna provided by a set of EKF, one for each antenna. Here we want to focus on the details
about the methodology and algorithm.

4.2.1 Range and bearing estimation

Each antenna position with respect to the agent is estimated with an EKF fusing range
measurements with visual odometry readings. The discretized range and bearing dynamics
are given by:

ρi,k+1 = ρi,k−δ vo
x,k cos(βi,k)−δ vo

y,k sin(βi,k)

βi,k+1 = βi,k +δ vo
θ ,k +

δ vo
y,k cos(βi,k)−δ vo

x,k sin(βi,k)

ρi,k
.

(4.22)

Using these equations and the antenna range measurement i, a two dimensional EKF (initial-
ized with the available range measurement and an arbitrary bearing, e.g. 0, characterized
by a large standard deviation, e.g. π/3) can be designed to produce an estimate (ρ̂i,k, β̂i,k).
This estimate will be regarded, from now, on as a sensor able to provide a range and bearing
measurement with an uncertainty captured by the covariance matrix of the EKF associated
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with the antenna i. However, in the first steps of execution, the EKF reconstructs values far
from the real antenna position, so a method to cope with this problem must be adopted.

4.2.2 Simultaneous Localization And Mapping

For each antenna in the environment, the EKF based algorithm in Section 4.2.1 is initialized
and executed. At each time step k, the estimated ranges and bearings (ρ̂1,k, β̂1,k), · · · ,
(ρ̂L,k, β̂L,k) are computed for the L antennas. These estimations are then available to perform
the EKF SLAM algorithm. The state vector, including landmark positions to map the features
in the environment, is xk = [xa,k,ya,k,θk,xu1,k,yu1,k, · · · ,xuL,k,yuL,k]

T . The dynamics of the
system is the following:

xk+1 =
[
xa,k +δ vo

x,k,ya,k +δ vo
y,k,

θk +δ vo
θ ,k,xu1,k,yu1,k, · · · ,xuL,k,yuL,k

]T (4.23)

and will be synthetically referred to in this dissertation by:

xk+1 = f (xk,δ
vo
x,k,δ

vo
y,k,δ

vo
θ ,k), (4.24)

The range and bearing measurements between the agent with pose (xa,k,ya,k,θk) and the
antenna in position (xui,k,yui,k) can be defined as follows:

hi (xk) =

[ √
(xa,k− xui,k)

2 +(ya,k− yui,k)
2

θk− atan2(yui,k− ya,k,xui,k− xa,k)

]
(4.25)

When measurements from L antennas are available, (4.5) becomes a vector h(xk) whose
2L elements contain the range and bearing from the L antennas. The EKF-based SLAM
algorithm can be easily obtained in a way similar to the one reported in [8] for the case of
encoder readings. However, the process model covariance matrix Qk in the case of Visual
Odometry can be created based on information provided on the current pose, assuming that
the global features in the environment are only a function of the current pose, as suggested
in [157]. Let consider the following measurement model:

pC
f = RG

C (pG
f − pG), (4.26)

where pC
f = [px, f py, f pz, f ]

T represents the pose of an ORB-SLAM2 feature with respect to
the camera frame, RG

C the rotation from the camera to the global frame, pG
f the feature pose

with respect to global frame and pG the camera pose with respect to global frame. In order to
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compute Qk, the following summation can be performed over the n f features:

Qk =

(
n f

∑
f=1

(H1, f H2, f )
T

Λ
−1H1, f H2, f

)−1

, (4.27)

where Λ = diag(1/f 2
x , 1/f 2

y ) ( fx and fy being the focal lengths in the x and y directions, respec-
tively) and:

H1, f =

 1
pz, f

0 − px, f

p2
z, f

0 1
pz, f

− py, f

p2
z, f


H2, f =

[
⌊pC

f×⌋ −RG
C

]
.

4.2.3 Countering the impacts of the outliers

Outliers that do not fit the Extended Kalman Filter’s presumed stochastic model can have an
impact on range and bearing reconstruction, which could pose a problem when estimating
the parameters. A resilient EKF should be created to withstand the effects of the outliers.
A module to identify the existence of one or more outliers in the measurements should be
part of the innovative filter. If there are outliers, robust estimation is created based on the
statistical test of the normalized residual using a modified version of the IGGIII technique
described in [152].

4.2.4 Resilient engine for EKF-SLAM

Detection of the global outliers. The observations are shaped as a Gaussian distribution
N (ẑ−k ,Cobs,k), according to the EKF-SLAM algorithm presented in Section 4.2.2. The
presence of observation outliers leads to the possibility that the assumption could be violated;
in order to understand if a an outlier for the measurement is there or not, the system must be
provided with a test to guarantee that the actual measurement is comparable to that of the
alleged model. A test can be defined in order to check that no measurement zi, i∈ {1, . . . ,2L}
is influenced by outliers; this test is called the null hypothesis. Taking into account the
measurement probability density function, the statistic term can be exploited in order to
check for errors in the model. In particular, as provided in [153], the distance of Mahalanobis,
denoted with Mk, from measurement zk and ẑ−k (being the corresponding mean) can be used
as an index to determine possible errors in the model. Specifically, the square of this quantity
can be taken into account:

M2
k = (zk− ẑ−k )

T (Cobs,k)
−1(zk− ẑ−k ). (4.28)
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When the null hypothesis is true, M2
k should follow a Chi-square distribution with a number

of degrees of freedom equal to 2L. A new statistical test must be then defined and, with
that, an α threshold below which the null hypothesis must be rejected. Then the Chi-square
distribution α-quantile χα is defined in such a way that:

P(M2
k > χα) = α, (4.29)

where P(M2
k > χα) represents the probability that M2

k is larger than χα . This probability
should be small as α . For the current measurement z̃k, a new index can be defined and denoted
with M̃2

k ; when this index results being larger than the α-quantile, the null hypothesis shall
be rejected and there is the possibility of having multiple outliers in the current measurement
(see [154] for reference).
Scaling for Kalman gain. Although it does not identify which measurements contain outliers,
the detection of the global outliers provides a way for determining if the model complies with
the parameters. An alternative hypothesis to the null hypothesis can be defined, stating that
the measurement zi is an outlier for multiple fixed i. The value of the normalized observation
residual for the measurement i at time step k, is defined as:

wk,i =
|nk,i|√cnini

, (4.30)

where nk,i is the ith element of the residual of the measurement and cnini is the ith element
on the diagonal of Cobs,k. The quantity defined in (4.30) can be used to decide whether an
observation is an outlier or not. In the case of an outlier, the covariance must be inflated; that
can be obtained shaping appropriately the Kalman gain Kk. Hence, a new Kalman gain can
be defined as a robust gain matrix factor K̃ ji:

K̃ ji =


K ji, wi ≤ a0

K ji
a0
wi

(
a1−wi
a1−a0

)3
, a0 < wi ≤ a1

0, wi > a1,

(4.31)

where a0, a1 are the robust Kalman gain constants and j is the jth element in the state vector;
the time step k has been omitted in (4.31) and it should be noted that the factor a1−wi

a1−a0
is

raised to the third power as presented in [3]. The rationale for this decision is that when the
normalized measurement residual falls inside the range of (a0,a1], we wish to further reduce
the robust Kalman gain factor.
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4.2.5 VO failures: the auxiliary EKF

When the Visual Odometry is not available, the information on the robot motion can be
obtained from the available UWB applying a two dimensional Extended Kalman Filter,
denoted in the following by auxiliary EKF. We have to mention that, during the experiments,
when the VO is not available but enough UWB can be seen by the robot, the system is still
able to perform the SLAM without any failure.

Let k0 be the time step when the VO becomes not available. When this occurs, the UWB
position estimate is frozen at its current value and only the estimate of the agent position
(xa,k,ya,k) is updated according to the UWB range measurements. This is performed by
applying an Extended Kalman Filter, estimating (xa,k,ya,k) only using the available UWB
range measurements ρi,k. The filter prediction step of the filter, as the odometry is not
available, is applied to the following approximate robot motion model:

xa,k+1 = xa,k +nx,k (4.32)

ya,k+1 = ya,k +ny,k, (4.33)

where the noise terms nx,k and ny,k model the (unknown) agent displacement at step k and are
assumed 0 mean Gaussian random variables with standard deviation σd depending on the
maximum expected agent displacement over a sampling step.

The correction step of the EKF accounts for the range measurements coming from any
available UWB i, which position is given by the last estimate (x̂ui,k0, ŷui,k0) provided by the
EKF-SLAM algorithm before the VO failure (i.e. at the switching time k0).

The initialization of the EKF (i.e. of (x̂a,k, ŷa,k) and of the corresponding 2×2 covariance
matrix Pxy,k) is based on the agent position estimate provided by the EKF-SLAM algorithm at
the switching time. Specifically, (x̂a,k, ŷa,k) is assigned from the latest agent position estimate
from the EKF-SLAM, while the covariance matrix Pxy,k is initialized with the 2×2 block of
the EKF-SLAM covariance matrix related to the agent position estimate.

Then, the equations of the prediction step of the filter are given by:

x̂−a,k+1 = x̂a,k (4.34)

ŷ−a,k+1 = ŷa,k (4.35)

P−xy,k+1 = Pxy,k +Qk, (4.36)

where Qk = σ2
d · I2, being I2 the 2×2 identity matrix.

If no UWB measurement is available at step k + 1, we simply confirm the estimate
of the prediction step, by assigning x̂a,k+1 = x̂−a,k+1, ŷa,k+1 = ŷ−a,k+1 and Pxy,k+1 = P−xy,k+1.
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In the case, on the contrary, at step k+ 1 some UWB measurements ρi,k+1 are available,
the correction step of the EKF can be applied as follows. Let Lv be the number of UWB
measurements available at step k+1 and let

ρ̂i,k+1 =
√

(x̂−a,k+1− x̂ui,k0)
2 +(ŷ−a,k+1− ŷui,k0)

2 (4.37)

be the expected range measurement from UWB i, i = 1,2, . . . ,Lv. Let ρ̂k+1 be the Lv× 1
vector comprising all the expected available UWB measurements at time step k+1 (similarly
let ρk+1 be the vector of the corresponding actual measurements). Then, the equations of the
correction step of the filter are given by:[

x̂a,k+1

ŷa,k+1

]
=

[
x̂−a,k+1

ŷ−a,k+1

]
+Kk+1(ρk+1− ρ̂k+1)

(4.38)

Pxy,k+1 = (I2−Kk+1 Hk+1)P−xy,k+1, (4.39)

where Hk+1 is the Lv×2 Jacobian matrix of the measurement model with respect to the state,
i.e., for each available UWB measurement i, the i-th raw of Hk+1 is given by

Hk+1,i =
1

ρ̂i,k+1

[
x̂−a,k+1− x̂ui,k0, ŷ−a,k+1− ŷui,k0

]
. (4.40)

The Kalman Gain Kk+1 is given by

Kk+1 = P−xy,k+1HT
k+1

(Hk+1P−xy,k+1HT
k+1 +Rk+1)

−1,

with Rk+1 a diagonal Lv×Lv matrix with element (i, i) given by the variance σ2
k+1,i associated

with the noise in the measurement coming from the i-th observed UWB at time k+1. This
noise depends on the error characterizing the UWB sensor and on the uncertainty associated
with the estimate of the i-th UWB position. Hence:

σ
2
k+1,i = σ

2
ρ +Hk+1,uiPuiH

T
k+1,ui

,

where:

• σρ is the standard deviation of the measurement error characterizing the UWB sensor;
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• Pui is the 2×2 block of the covariance matrix of the EKF-SLAM related to the estimate
x̂ui,k0 and ŷui,k0 of the UWB coordinates at time k0 (i.e. when the VO starts to become
unavailable);

• Hk+1,ui is the derivative of the range measurement from the i-th UWB with respect to
the UWB coordinates and this is equivalent, apart from the sign, to the derivative with
respect to the agent coordinates, i.e. Hk+1,ui = −Hk+1,i, where Hk+1,i is reported in
(4.40).

4.2.6 Switching observer

The switching observer is responsible for the fault detection in the camera sensor which,
through the use of the ORB-SLAM2 algorithm, provides an agent pose estimation x̂vo.
When the camera or the Visual Odometry algorithm have a fault (e.g. when light conditions
change rapidly or some hardware error occurs), the pose estimation is not available and the
equations (4.22) and (4.24) cannot be used as the quantities δ vo

x,k, δ vo
y,k, δ vo

θ ,k are not available.
Thus the system needs to switch in order to feed the range/bearing estimation and EKF-
SLAM algorithms with a valid agent pose estimation (in our implementation this is provided
by the auxiliary EKF presented in Section 4.2.5 and denoted with x̂uwb). Furthermore,
when x̂vo is not available, the EKF-SLAM update step is not performed because the range
measurements are already used in the auxiliary EKF algorithm to compute x̂uwb which is
used in the prediction step of the EKF-SLAM. This must be also taken into account by the
switching observer as shown in Figure 4.2. The switching law that regulates the way the
system acts through the switching signal σ is available and straightforward: when there is
a camera fault or the Visual Odometry is not available, the system uses the auxiliary EKF
disabling the EKF-SLAM update step, otherwise the Visual Odometry is used and the system
works regularly as described in Sections 4.2.1, 4.2.2, 4.2.3. When the VO becomes not
available, the last agent position estimate from EKF-SLAM is used by the auxiliary EKF
and its covariance matrix is initialized with the EKF-SLAM covariance matrix related to the
agent position estimate as previously described in Section 4.2.5. On the other hand, when the
VO becomes available, the EKF-SLAM uses the pose and covariance matrix coming from
the VO (ORB-SLAM2) as described in Section 4.2.2.
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Fig. 4.2 The switching observer schema with the auxiliary EKF, range and bearing estimation, and
Resilient EKF-SLAM (REKF-SLAM) blocks.

4.3 Visual-UWB resilient multi-sensor fusion with deep
learning approach

In this section a resilient multi-sensor fusion system based on deep learning techniques
will be presented for visual odometry and UWB sensors. In particular, we focused on a
SLAM problem using UWB antennas for a generic agent moving on an indoor environment.
UWB measurements are usually modeled as range measurements affected by Gaussian noise;
for more complex analytical models for UWB measurements, they also include biases and
other physical effects. However, it is often difficult to model in a precise and effective way
the physical effects, especially multi-path, and they are left out of the analytical model.
In the presented approach, we resort to a deep neural network, trained on the real UWB
measurements, able to incorporate the physical characteristics of those measurements, thus
brining more accurate predictable measurements to the update step of the EKF-SLAM
algorithm. The presented approach is computationally comparable to the algorithm where
the Jacobian matrix can be computed in closed form (due to the availability of real data).

The system comprises an agent mounting a UWB antenna on top of it as presented and
described in Section 3.2.2. The multi-sensor fusion architecture, with an overview of the
main steps of the approach has been presented in Section 3.3.4, where we stated that the
resilient SLAM problem will be solved through an EKF algorithm endowed with a deep
learning model for sensor measurements which uses the range and bearing estimation of
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each UWB antenna provided by a set of EKF, one for each antenna. Here we want to focus
on the details about the methodology and algorithm, especially in the details about the new
proposed measurement model achieved with deep learning techniques.

4.3.1 Deep Neural Network architecture

The architecture of the deep neural network is presented in this section. The model must
take into account the physical effects and should be able to capture the complexity of the
measurement model. In order to design such a model, the deep neural network has been built
according to the following components/layers:

• 1 input layer (with 6 input neurons)

• 3 dense layers for each input neuron (the first with 16 neurons and ReLU activation
function, the second with 16 neurons and ReLU activation function and the third with
3 neurons and linear activation function)

• 6 dropout layers

• 1 dense layer with 32 neurons and ReLU activation function

• 1 dense layer with 64 neurons and ReLU activation function

• 1 dense layer with 32 neurons and ReLU activation function

• 1 output layer (1 neuron)

The previous architecture design has been achieved through the application of the grid search
algorithm to fix the number of neurons on each layer (considered as hyper-parameters of
the model). The dropout layers in the middle of the network have been introduced in order
to help the network, during the training process, to better generalize from the inputs. The
designed deep neural network is reported in 4.3.

Deep Neural Network training with UWB measurements

The deep neural network architecture presented in Section 4.3.1 must be trained with the
real sensor measurements acquired in real experiments. In order to do so, we prepared a
dataset that has been used in the training phase; the details of the dataset will be presented in
Section 5.3.1.
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Fig. 4.3 Architecture diagram of the deep neural network for modelling sensor measurements. The
model is a combination of dense and dropout layers. The legend on the right reports the layers
appearing of the left side of the diagram.

The multi-modal input information is composed of 6 inputs, specifically [xa,k,ya,k,za,k,

xui,k,yui,k,zui,k]
T , for each time-step k and for each UWB antenna i. The training has been

achieved using the Adam optimizer with a custom loss function defined in Equation 4.41.

floss = 1− ∑
m
i=1(yi− ȳ)(ŷi− ¯̂y)√

∑
m
i=1(yi− ȳ)2 ∑

m
i=1(ŷi− ¯̂y)2

+
1
m

m

∑
i=1

(yi− ŷi)
2, (4.41)

This particular loss function takes into account both the MSE and the Pearson correlation in
order to penalize the model for making large prediction errors and to maximize the correlation
between the predicted and the real values, as similarly previously defined in Equation 3.46.

4.3.2 Range and bearing estimation

The range and bearing estimation has been achieved resorting to a two dimensional EKF
producing an estimate of those quantities. This estimate can be regarded as a sensor able
to provide a range and bearing measurements with an uncertainty captured by the covari-
ance matrix of the EKF associated to the UWB antenna i, similarly to that presented in
Section 4.2.1.

4.3.3 Simultaneous Localization and Mapping with deep learning

For each antenna in the environment, the EKF based algorithm in Section 4.3.2 is initialized
and executed. At each time step k, the estimated ranges and bearings (ρ̂1,k, β̂1,k), · · · ,
(ρ̂L,k, β̂L,k) are computed for the L antennas. These estimations are then available to perform
the EKF SLAM algorithm. The state vector, including landmark positions to map the
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features in the environment, is xk = [xa,k,ya,k,za,k,xu1,k,yu1,k,zu1,k, · · · ,xuL,k,yuL,k,zuL,k]
T . The

dynamics of the system is reported in Equation 4.42.

xk+1 =
[
xa,k +δ vo

x,k,ya,k +δ vo
y,k,za,k +δ vo

z,k,xu1,k,yu1,k,zu1,k, · · · ,xuL,k,yuL,k,zuL,k

]T
(4.42)

and will be synthetically referred to in this dissertation by:

xk+1 = f (xk,δ
vo
x,k,δ

vo
y,k,δ

vo
z,k), (4.43)

The range and bearing measurements between the agent with pose (xa,k,ya,k,za,k) and the
antenna in position (xui,k,yui,k,zui,k), differently from what has been presented in Section 4.2.2,
Equation 4.25 can be computed as follows:

hi (xk) = hDNN (xk) , (4.44)

where hDNN represents the output predicted by the deep neural network presented in Sec-
tion 4.3.1. When measurements from L antennas are available, (4.5) becomes a vector h(xk)

whose 2L elements contain the range and bearing from the L antennas. The EKF-based
SLAM algorithm can be easily obtained in a way similar to the one reported in [8] for the
case of encoder readings. The process model covariance Qk is obtained from Equation 4.27.

The measurement model hDNN(xk) is not in an analytical closed form, thus the Jacobian of
the measurement function Hk =

∂h
∂xk

∣∣∣
x=x̂−k

(whose analytical form, for a slightly different set

of state variables, is reported in Equation 4.6) cannot be expressed analytically, but it has to be
computed numerically. In order to do so, we choose a small perturbation value ε that should
be small enough to avoid introducing significant errors but large enough to avoid numerical
precision issues. Then, for each element of the state vector that the measurement function
depends on, we create two slightly perturbed versions of the state vector. One version should
be the "actual estimate," and the other should be a value close to the estimate, achieved
by adding or subtracting ε from the actual estimate. Then, we evaluate the measurement
function at both the actual estimate and the perturbed estimate for each element of the state
vector. And we calculate the derivative for each element of the state vector using the central
difference formula. Given that, Equation 4.6 can be rewritten as follows:

Hk =
∂h
∂xk

∣∣∣∣
x=x̂−k

=
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

H1,1 H1,2 H1,3 H1,4 H1,5 H1,6 · · · 0 0 0
H2,1 H2,2 H2,3 H2,4 H2,5 H2,6 · · · 0 0 0

...
...

...
...

...
...

. . .
...

...
...

H2L−1,1 H2L−1,2 H2L−1,3 0 0 0 · · · H2L−1,3+3L−2 H2L−1,3+3L−1 H2L−1,3+3L

H2L,1 H2L,2 H2L,3 0 0 0 · · · H2L,3+3L−2 H2L,3+3L−1 H2L,3+3L


Hi, j =

hDNN,i(x̂k + εe j)−hDNN,i(x̂k− εe j)

2ε
, (4.45)

where Hi, j is the derivative of the i-th measurement function element with respect to the j-th
state variable, ε is the perturbation value and e j is a vector with zeros in all elements except
the j-th element, which is 1. The value for ε should be small and it has been chosen as 10−6.

The EKF-SLAM problem can then be solved as reported in Section 4.1.2, computing
the correction step, Kalman gain and updated covariance matrix, using the Jacobian Hk as
defined in Equation 4.45.

4.3.4 Resilient engine for Deep EKF-SLAM

The results related to the resilient engine presented in Section 4.2.4 are still valid also in the
case of the measurement model provided by a deep neural network. In particular, the Maha-
lanobis distance (Equation 4.28) will provide a better index of how the real measurements
are far from the predicted measurements, if the DNN model is more precise in capturing
the details and characteristics of the sensor measurements compared to the analytical model.
At the same time, the Kalman gain scaling, that relies upon the observation residual (i.e.
nk = zk− ẑ−k ), will present better results with the DNN measurement model compared to the
analytical model presented in Section 4.2.2 if it is confirmed that the DNN model is more
precise than the analytical model. The discussion and comparisons of the two models will be
presented in the experiments reported in Section 5.3.1.

4.4 Multiple visual sensor fusion

In this section a multiple visual sensor fusion system will be presented for visual odometry
sensors. In particular, the proposed sensor fusion architecture is based upon the hypothesis
that there are several visual odometry systems for the agent.

The system has been already presented and described in Section 3.3.3; the details of the
approach will be presented in this section.
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4.4.1 Pre-filtering

Like other sensors, visual sensors are susceptible to noise, which also has an impact on the
precision of the localization systems that analyze their samples. The location measurements’
accuracy might be harmed by this noise, which could potentially produce outliers. Samples
must thus undergo adequate filtering prior to entering the sensor fusion system. The proposed
approach is divided into two steps: first, each measurement is subtracted its previous value (as
reported in Section 3.3.3) to obtain a difference sample ∆i[k] for i = 1, . . . ,n, then, this sample
is filtered by the operator F. By using different samples, one can reduce systematic errors that
could negatively impact localization systems. Additionally, using different samples makes it
easier to implement subsequent stages because each sample’s absolute value is reduced to the
bare minimum required to hold useful information, minimizing the impact of quantization or
representation errors brought on by microprocessors. Finally, the purpose of the operator F
is to further smooth the samples and reduce the impact of outliers. In the literature, a similar
problem has been solved in the context of image processing by applying median filtering, i.e.
averaging under the L1 norm [158–160]. Thus, the F operator is designed as a median filter,
a discrete-time nonlinear filter that returns the median over a buffer of samples, whose length
can be tuned as a parameter of the sensor fusion system, and implemented using the efficient
Quicksort algorithm [161].

4.4.2 Blending

The design of the blending map B is limited by the only information available to it as in
Section 3.3.3: the position difference samples and the state of each sensor. A meaningful
and effective way to combine this limited information is to perform a weighted average
of the difference samples. Let ∆̄ f [k] = [∆1, f [k]′, . . . ,∆n, f [k]′]′, s̄[k] = [s1[k], . . . ,sn[k]]′, and
α1, . . . ,αn ∈ R such that ∑i αi = 1. The blending map is given by:

B(∆̄ f [k], s̄[k]) =
n

∑
i=1

ᾱi[k]∆i, f [k] , (4.46a)

ᾱi[k] = si[k]αi

(
1+

∑
n
j=1(1− s j[k])α j

∑
n
j=1 s j[k]α j

)
i = 1, . . . ,n . (4.46b)

The structure of (4.46) is simple, but it has many features. First, (α1, . . . ,αn) can be tuned to
account for different accuracy and overall reliability of each sensor. Additionally, the sensors’
condition affects how the samples are fused, enabling the system to withstand momentary
or long-term failures of some of its modules. Last but not least, the map (4.46a) is highly
effective in terms of implementation since it resolves to a sum of products that can be run
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very rapidly on any CPU. The blended difference sample is then combined with the last
position sample after being post-processed using a median filter.





Chapter 5

Applications: resilient multi-sensor fusion
for autonomous agents. Numerical and
experimental results

In recent years, the field of autonomous systems has witnessed remarkable advancements, rev-
olutionizing various industries such as transportation, robotics, and surveillance. Autonomous
agents, equipped with sophisticated sensor suites, have become integral components of these
systems, enabling them to perceive and interact with the surrounding environment in real-
time. However, ensuring robust and resilient perception remains a significant challenge due
to the complexity and uncertainty inherent in real-world scenarios.

The key to addressing this challenge lies in effectively integrating information from
multiple sensors through the process of multi-sensor fusion. Multi-sensor fusion leverages
the complementary strengths of different sensor modalities, mitigating the limitations of
individual sensors and enhancing the overall perception capabilities of autonomous agents.
By fusing data from diverse sensors, such as cameras, LiDARs, radars, and GPS, autonomous
agents can obtain a more comprehensive and accurate understanding of their surroundings.
This chapter focuses on the application of resilient multi-sensor fusion for autonomous agents
(mobile robots and generic agents), exploring the integration of classical and deep learning
techniques to enhance the perception capabilities of these agents. Resilience is a critical
aspect, as it ensures that the perception system remains robust and reliable even in the face
of sensor failures, adverse weather conditions, or unexpected environmental changes. By
designing resilient multi-sensor fusion algorithms, we aim to develop perception systems
that can adapt and maintain accurate perception under challenging circumstances.

The chapter is structured as follows: first, we provide the results of an application
for a mobile robot system with sensors based on odometry and RFID antenna and tags.
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experimental results

Then we present the results of an application for a generic agent with visual odometry
and UWB antennas, moving in an unknown environment. Subsequently, we explore the
integration of deep learning techniques into multi-sensor fusion frameworks. Deep learning
has revolutionized many domains of artificial intelligence, and its application to multi-sensor
fusion holds great promise for enhancing perception capabilities. We discuss the potential
benefits of deep learning in multi-sensor fusion and highlight various architectures and
methodologies that have been proposed in the literature.

To address the challenges of resilience, we then introduce novel approaches for designing
resilient multi-sensor fusion algorithms. We investigate techniques for sensor failure detection
to ensure that the perception system can adapt and maintain accurate perception even in the
presence of sensor failures or degraded sensor data. We also explore strategies for handling
uncertainties and adversarial conditions in the environment, enabling the autonomous agents
to make informed decisions. Throughout the chapter, we provide comprehensive evaluations
and comparisons of different fusion techniques, both classical and deep learning-based,
using real-world datasets and simulation environments. We assess the performance of these
techniques in terms of accuracy, robustness, computational efficiency, and adaptability to
different environmental conditions.

In summary, this chapter aims to contribute to the growing body of research on multi-
sensor fusion for autonomous perception by focusing on the development of resilient al-
gorithms. By combining classical and deep learning techniques, we strive to enhance the
perception capabilities of autonomous agents, enabling them to operate in complex and
uncertain environments. The findings and insights presented in this chapter will contribute to
the advancement of autonomous systems and pave the way for more intelligent and reliable
autonomous agents in various applications.

5.1 Application to an odometry-RFID system

In this section the results of the application of the resilient multi sensor fusion paradigm
presented in Section 4.1 will be reported. The results will be presented both from several sets
of simulations that have been run (in Section 5.1.1) and on real-world experiments that have
been conducted and whose details will be presented in Section 5.1.2.

5.1.1 Numerical investigation and examples

This section comprises two sets of simulations, one with synthetic UHF-RFID data corrupted
only by a Gaussian noise and the other with UHF-RFID data generated by means of a
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Fig. 5.1 Simulation scenario considered in Section 5.1.1, with the tags in position
(0.5,0.5), (1.5,0.5), (0.5,1.5), (1.5,1.5) and one possible random robot trajectory. The small square
box represents the starting point of the considered trajectory, which is 14.63 m long and is covered in
2000 simulation steps. The small circle represents where the robot stops.

numerical calculation based on suitable beam-tracing algorithms [162–164]. The scenario
considered in the first case is a 2×2 m2 indoor environment without multipath effects whilst,
in the second case, a 6× 6 m2 room containing some furniture is considered, as detailed
below. The robot performs random paths of the type reported in Figure 5.1. These paths are
generated by randomly selecting the initial position and orientation of the robot and with the
odometry readings numerically generated with a Gaussian error. When going straight, the
robot proceeds at constant speed covering about 1cm in each time step. When performing a
turn, the robot covers about 5◦ per time step. The duration T of the simulations considered
in this section is 2000 steps, corresponding to an average of about 15 m of traveled distance
(depending on the number of turns performed). The parameters of the robot are as follows:
d = 26 cm, KR = KL = 0.01 cm. In the two simulation sets the UHF-RFID tags are located at
a height of 2.5 m with respect to the robot antenna and the estimated height is perturbed over
each simulation with a random error of ±3 cm (this error is due to the fact that the ceiling
height is known with a certain approximation). Moreover the unknown offset φo on the phase
measurements depending on the hardware, as stated in Section 3.1.3, is also considered in
the simulations as a random value from 0◦ to 360◦ and different in each simulation.

After discussing in Section Parameter tuning some issues related to the choice of the main
parameters appearing in the algorithms, a set of simulations is reported in Section Numerical
examples to illustrate the behavior of the proposed approach in a noisy environment, where
phase measurements are characterized by a Gaussian noise with standard deviation σφ =

10◦. Furthermore, in Section Numerical analysis with multipath affected signals a set of
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simulations is reported where the phase measurements are generated by numerical calculation
based on beam-tracing algorithms, adding the Gaussian noise, considering a 6×6 m2 indoor
environment with some furniture to also consider the effect of multipath on the system,
shown in Figure 5.2.

The numerical model we have used takes into account the materials of the environment
and the propagation effects. In particular, the model has been developed for the central
frequency of the allowed European band for RFID (i.e. 867 MHz), walls are considered
made of concrete having relative permittivity 6 and loss tangent 0.25, while furniture are
supposed made of wood with relative permittivity 1.7 and loss tangent 0.001. The wave
propagation algorithms account for multiple reflections from walls and furniture and wedge
diffraction. Since the interactions (i.e. reflections and diffractions) with the environment may
be mitigated by particular radiation properties of the reader’s and tag’s antenna (e.g. directive
antennas may mitigate multipath effects), we use a half-space isotropic model of antennas in
order to test the SLAM algorithms in the most possible general conditions. Considering the
reader’s antenna is near the floor and points toward the ceiling, while the tag’s antenna is
on the ceiling and points toward the floor, both reader’s and tag’s antenna are modelled as
isotropic sources in the half-space they are pointing. A half-space isotropic source accounts
for multipath coming from all directions in that half-space consequently it models the most
general multipath condition. Throughout the following sections, the results of the presented
methodology have been compared to those of the methodology proposed in [165], showing
the overall performance improvements both in terms of SLAM estimates and computational
complexity.

Parameter tuning

The proposed algorithm relies on the following parameters to be properly tuned:

• st , which is a constant used to decide if the current instance for a tag estimation in the
Multi-Hypothesis EKF is stable or not, as number of timesteps;

• α-quantile χα in (4.17);

• a0 and a1 (with a0 < a1) constants, appearing in (4.18);

• ḡ constant, weighing the outliers whose normalized measurement residual is greater
than a1;

• Tf is the threshold beyond which the sensor is considered faulty;

• Tr is the threshold beyond which the sensor is considered reliable.
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Fig. 5.2 Indoor scenario with four tags located in position (1.5,1.5), (1.5,2.5), (2.5,1.5), (2.5,2.5).
The robot moves in the dashed red 2× 2 square area, close to wood furniture, which introduce
multipath. The 4 insets show the phase of the four tags measured in the 2× 2 considered area:
multipath effects, which perturb phases and create voids (white spots on the diagrams where the
signal is not received), are clearly visible (in ideal conditions we would obtain concentric circles).
The vertical bar indicates the phase value in degrees.

As for st , a too small value of this parameter (e.g. st less than 5 steps) makes the instance
stable even if it is switching quite frequently and this should be avoided. On the other hand
a high value of st (e.g. st greater than 40 steps) implies that the instance is seen as stable
after a considerable amount of time, and going beyond this value could lead to evaluate the
instance as unstable continuously. Based on numerical results, a good trade off has been
obtained by taking st = 20 steps. For the outlier detection, α-quantile χα in (4.17) is chosen
from the Chi-square distribution table for 8 degrees of freedom, as 4 tags are considered in
the scenario and each tag has 2 (for range and bearing measurements). For the 8 degrees
of freedom Chi-square distribution with the significance level being 1 %, it is 20.09. The
robust Kalman filter gain relies upon the constants a0 and a1 (with a0 < a1), appearing in
(4.18). Based on the work in [166], a0 ranges in [1.0,2.5] and a1 ranges in [3.0,8.0]. For
the simulations a0 = 1.5 and a1 = 3.5 have been chosen in order to achieve a good trade-off
between marking an observation as an outlier and integrating it as a correct measurement
(eventually adjusting it). The sensor fault detection method in Algorithm 4.1.4 relies upon
the constant ḡ weighing the outliers whose normalized measurement residual is greater than
a1, as previously fixed. The value ḡ = 2 has been chosen as it allows the algorithm to weigh
twice the outliers that zero the Kalman gain elements K̃ ji in respect to the outliers that reduces
the Kalman gain elements K̃ ji according to (4.18). Furthermore, Tf and Tr are two important
parameters for the fault/reliability detection, Tf being the threshold beyond which the sensor
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Fig. 5.3 Illustration of the algorithm during the execution: the green circles highlight the Multi-
Hypothesis EKF selected instance (i.e. the measurement feeding the EKF-SLAM algorithm), while
the small black triangles represent the MHEKF instances. The robot ground truth pose is depicted
with a red circle and its orientation with an arrow pointing out of the circle whilst the robot estimated
pose is represented by a green x mark and its orientation with an arrow pointing out of the mark. The
red stars represent the real tags position.

is considered faulty. If a too small value is chosen for this threshold (e.g. Tf < 5), then the
system will shutdown the sensors even if they are still working with reduced quality. On
the other hand if its value is too high (e.g. Tf > 20), the system will only catch few faulty
situations. Given that, a good trade off has been obtained by taking Tf = 10, which means
that the system is capable of shutting down the malfunctioning sensor in the worst case after
10 timesteps. A similar argument applies to parameter Tr which has been set to 8.

Numerical examples

In this section multipath effects are not considered and only a Gaussian noise has been added
to the ideal phase measurements. The scenario is the one described in Figure 5.1. The
execution of the robust EKF-SLAM algorithm is depicted in Figure 5.3. The path traveled
by the wheeled robot is reported in Figure 5.4, where the ground truth trajectory (in blue) is
shown together with the trajectory estimated by the robust EKF-SLAM (in red).

The same set of simulations has been run with the SLAM algorithm presented in [165],
in order to compare their performances with the indexes proposed in that paper. As for the
robot position estimation, we first compute the difference between the true and the estimated
distance of the robot from the position of the four tags in the various steps k of the simulation,
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Fig. 5.4 The ground truth robot trajectory (blue) and the trajectory estimated through the EKF-SLAM
algorithm (red).

i.e.

eri,k =

∣∣∣∣√(xr,k− xTi)
2 +(yr,k− yTi)

2−
√
(x̂r,k− x̂Ti,k)

2 +(ŷr,k− ŷTi,k)
2

∣∣∣∣ .
Then, an average robot position estimation error is computed by averaging the previous
quantity over the 4 tags and considering the last 1000 steps of the simulation:

er =
1
4

4

∑
i=1

[
1

1000

T

∑
k=T−999

eri,k

]
,

with T = 2000 being the duration of each simulation.
As for the tag position estimation, we similarly define the difference between the true

and the estimated distance among the four tags in the various steps k of the simulation, i.e.:

eti j,k =
∣∣∣√(xTi− xTj)

2 +(yTi− yTj)
2−
√
(x̂Ti,k− x̂Tj,k)

2 +(ŷTi,k− ŷTj,k)
2
∣∣∣ ,

with i= 1,2,3 and j = i+1, . . . ,4. Then, an average tag position estimation error is computed
by considering the average of the various estimation errors in the last step of the simulation:

et =
1
6

3

∑
i=1

4

∑
j=i+1

eti j,T ,

where 6 is the total number of distance errors eti j,T , i = 1,2,3 and j = i+1, . . . ,4.
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Fig. 5.5 This figure shows the trend of the errors for both robot (er) and tags (et) position estimation
for the EKF-SLAM presented in this discussion (top) and for the particle filter proposed in [165]
(bottom).

Table 5.1 Robot and tags position average estimation errors with standard deviations (in cm)

er STD
Proposed approach 0.869 ±0.27
Approach [165] 2.479 ±1.25

et STD
Proposed approach 1.204 ±0.55
Approach [165] 4.110 ±2.64

The results of the simulations for the two algorithms are depicted in Figure 5.5 where
the errors er and et , previously defined, for 100 simulations for the method presented in this
discussion (top) and the results for the algorithm proposed in [165] (bottom) are showed.
This figure shows how both the errors for the robot and tags position estimation with the
presented EKF-SLAM are smaller compared to the SLAM approach in [165]. Table 5.1
shows the estimation errors average over all the simulations for the two methods. A further
simulation has been carried out in order to assess the performance of the resilience module;
in particular, the tag (1.5,1.5) has been shifted instantly from its original position to (0,1.5)
from time-step 1000. Over the 100 simulations, the average error er is 0.039 m for the
presented method and 0.097 m for the approach in [165]; et is 0.026 m for the presented
method and 0.209 m for the approach in [165]. The tag perturbation heavily affects the
SLAM approach in [165] as its average error for tag position estimate for the shifted tag is
0.945 m while is 0.034 m with the presented approach.
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Fig. 5.6 Error trends for both robot (er) and tags (et) position estimation for the EKF-SLAM (top) and
for the particle filter approach (bottom) in the case of multipath affected measurements.

Numerical analysis with multipath affected signals

This section refers to the case described in Figure 5.2, where phase measurements are
generated using the ray tracing software mentioned above and are corrupted with a Gaussian
noise with standard deviation 10◦. 100 simulations have been run with both the approach
described in this discussion and the one presented in [165]. Fig. 5.6 shows the results of the
simulations for both methodologies. From this figure and from table 5.2 it is clear how the
presented EKF-SLAM methodology outperforms the approach presented in [165] both in
terms of performance and, also, from a computational point of view. In fact, the simulations
ran on a AMD Ryzen 7 3800x 8-core processor 3.9GHz with 32GB RAM on Linux Ubuntu
20.04 with Matlab R2021a, showed an average computation time per simulation of 12.82 s for
the presented method and 91.59 s for the method in [165]. The difference of the computation
times would have been even more pronounced with more tags, as the approach in [165] needs
about 1000 initial instances for any new tag, while the presented method needs a few dozen.
For the presented method, the computation time for each time step (taking into account that
each simulation consists of 2000 time steps) is 0.0064 s: this low computation time allows
an implementation on a real robot even with small computational power with a real-time
fashion.
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Table 5.2 Robot and tags position avg estimation errors with standard deviations, under multipath
effects (in cm)

er STD
Proposed approach 6.635 ±0.92
Approach [165] 38.363 ±13.81

et STD
Proposed approach 6.016 ±2.03
Approach [165] 81.553 ±16.11

Tag 1

Tag 3 Tag 2

Robot x

y

z

Fig. 5.7 The experimental setup, with three tags on the ceiling, the robot during its mission and the
(x,y,z) frame adopted by the robot to solve the SLAM problem, selected according to the initial pose
of the robot.
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Fig. 5.8 A map of the considered environment, with the robot in its initial position and orienta-
tion (defining the global frame adopted) and the (x,y) position of the three tags considered in the
experiment. The path estimated by applying the proposed SLAM algorithm is also reported.
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5.1.2 Experimental results

A set of experimental tests has been performed in the office room depicted in Figure 5.7.
The robot used in the experiments is a custom unicycle-like vehicle with a differential drive
kinematics where the distance between the left and right wheel is 38.2 cm. The robot mounts
a Raspberry Pi 4 with a Linux Ubuntu 20.04 OS where a motion planner has been developed
for the high level control. An Arduino Mini is also installed in order to control the low level
references to the motors and the encoder readings. The reader antenna is placed on board the
robot at a height of 32 cm from the floor, it is a right-hand circularly polarized microstrip
patch antenna with 7 dBi of gain. The reader (M6e ThingMagic), wireless controlled by
means of a remote PC and a Raspberry Pi 4 on board the robot, supplies the antenna with
a power of 25 dBm and collects measured data with a rate of 15 Hz while the robot moves
with a speed of 0.2 ms−1. Measurements have been performed with UHF-RFID wave at the
frequency of 868 MHz. Tags have right-hand circular polarized antennas similar to that of the
reader, they have been realized with a stacked annular ring microstrip antenna as described
in [167]. Their low profile (the thickness is less than 1cm) is well suited to be mounted on
the ceiling by means of a small metallic ground plane as shown in Figure 5.7. The distance
between the plane of placement of the tags and the plane of placement of the reader antenna
is about 2.5 m.

The experiments have been conducted with the robot moving autonomously along a path
while collecting data from the encoders and from the UHF-RFID reader. The data collected
during the runs have been used offline to feed the developed algorithms and to assess their
performances. A map of the environment is reported in Figure 5.8 together with the estimated
robot trajectory for the experiment described in this section. Nominally the robot is requested
to cover a rectangular path performing two turns in the area under the tags. The requested
trajectory is followed open loop by the robot. Due to disturbances on the encoder readings
and wheels slipping, the programmed trajectory (a rectangular path) differs from the real
trajectory, as witnessed by the trajectory reconstructed by the SLAM algorithm. The ground
truth of the overall trajectory is not available in this experiment: we only measured the final
position of the robot at the end of its mission, which allowed to compute the performance
indexes considered in this work. In particular, we report in Tables 5.3 and 5.4 the true and
the estimated distances di j among tags (i, j ∈ {1,2,3}) and, respectively, the true and the
estimated distance di of the final robot position from the projection on the floor of the three
tags (i = 1,2,3). Figure 5.9 reports the map reconstructed by the algorithm.

The proposed methodology appears effective also in this experimental case even if the
estimation errors increase with respect to the simulation scenario. This mainly depends on
various unmodeled disturbances acting on the system, like, e.g., the effect of the relative
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Table 5.3 True and estimated inter-tag distances (in cm).

di j true estimated
d12 124 114
d13 112 99
d23 121 105

Table 5.4 True and estimated distances (in cm) of the robot from the estimated tags.

di true estimated
d1 18 33
d2 136 141
d3 130 131

tag-reader position on the phase measurements, which appears to produce the most relevant
perturbation. According to this effect, as also observed in the literature [168], the offset in
the phase measurements cannot be considered a constant quantity, as assumed in the model.
Nevertheless, since this quantity is subject to estimation, the proposed algorithm is in part able
to adapt to this change and to produce an acceptable behavior. Other unmodeled phenomena
include multipath effects, which produce quite wrong or even missing measurements, and
systematic errors like the approximate knowledge of system parameters, including the wheel
and the robot dimension. Due to these unmodeled phenomena and to other systematic sources
of error, the approach in [165] was not able to produce effective estimation results in this
experimental context, with the filter diverging after some steps.

5.2 Application to a visual-UWB system

In this section the results of the application of the resilient multi sensor fusion paradigm
presented in Section 4.2 will be reported. The results will be presented from several sets
of real-world experiments that have been conducted and whose details will be presented in
Section 5.2.1.

5.2.1 Experimental results

Experimental setup

The experiments have been carried out in an indoor environment (6×8.3 m2) cluttered with
furniture, boxes (both wooden and metallic) and desks, as shown in Figure 5.10-a. The agent
is equipped with an Intel RealSense D435i camera, an UWB EVB1000 board and a Laptop
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Fig. 5.9 The map realized by the proposed algorithm: black and red stars represent respectively the
true and the estimated position of the three tags. The black square and the red circle represent the true
and, respectively, the estimated final position of the robot. Since the ground truth for all the path is
not available for this experiment, only the final robot position is depicted.

(a) The agent with two UWB antennas. (b) A close-up of the agent.

Fig. 5.10 System layout in the indoor environment.
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with Intel Core i7-2640M CPU @ 2.80GHz, 16GB RAM as depicted in Figure 5.10-b. The
agent equipment is mounted on a four-wheeled platform trolley which can be moved freely
on the floor.

At the boundary of the walkable perimeter, three UWB EVB1000 boards that are the
same height as the one on the agent have been placed in unidentified positions. On the
aforementioned hardware, the ORB-SLAM2 method has been built in order to compute the
camera position at a rate of 15 Hz while the UWB range measurements are delivered at a
rate of 24 Hz. The camera trajectory before closing a VSLAM loop was employed in the
tests, and the camera trajectory following loop closure was also recorded as a benchmark.
With a standard variation of 0.09 mm, the UWB board placements and ground truth points
have been measured with a laser distance meter. In order to assess the proposed solution in
terms of comparison between the estimated, open-loop and closed-loop Visual Odometry
trajectories and switching observer resilience capability in case of camera sensor fault(s), the
experiments involved moving the agent around the room while recording the UWB and the
camera data.

Parameter tuning

The ORB-SLAM2 algorithm has been modified in order to increase its performances (with
the introduction of both computational and GPU optimizations) and to add more parameters
control (open source code is available in [169]). The ORB-SLAM2 has been used in IR-D
mode, using the Infrared and Depth streams from the RealSense camera at 30 Hz with a
resolution of 640×480 pixels and the number of features per image has been set to 800. For
the outlier detection, α-quantile χα is chosen from the Chi-square distribution table for 6
degrees of freedom (range and bearing of 3 antennas are considered) and with the significance
level being 1 %, it is 16.81. The robust Kalman filter gain relies upon the constants a0 and
a1, appearing in (4.31). Based on the work in [166], a0 ranges in [1.0,2.5] and a1 ranges in
[3.0,8.0]. For the experiments a0 = 1.5 and a1 = 3.5 have been chosen in order to achieve a
good trade-off between marking an observation as an outlier and integrating it as a correct
measurement. The standard deviation σd has been chosen as 0.05 m, as it directly depends
on the maximum expected agent displacement over a sampling step.

Experiments

In the first experiment, the agent has been pulled around the room for 24.23 m while the
camera and the UWB antenna mounted on the agent were acquiring data from the environ-
ment. The agent movement has been stopped in 4 points that have been marked and used as
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Fig. 5.11 UWB antenna position estimation errors for the first experiment.

waypoints for ground truth later on. During the experiment the open-loop Visual Odometry
(OLVO) and the UWB ranges have been recorded and used respectively as the inputs x̂vo and
ρ for the switching observer. The closed-loop Visual Odometry (CLVO), available as soon
as the ORB-SLAM2 algorithm has closed a loop, has been recorded as well. Table 5.5 shows

Trajectory Mean Median STD

CLVO 0.0279 0.0338 0.0201
OLVO 0.0481 0.0389 0.0288

REKF-SLAM 0.0252 0.0142 0.0325
Table 5.5 Comparison of Euclidean distances between the four ground truth waypoints and CLVO,
OLVO of ORB-SLAM2 and REKF-SLAM trajectory estimates evaluated at the waypoints (in m) for
the first experiment (best values are in bold).

the comparison between the CLVO, OLVO of ORB-SLAM2 and the REKF-SLAM estimate
evaluated in the four waypoints used in the experiments. The table provides mean, median
and standard deviation for each trajectory, showing the effectiveness of the proposed solution,
which avoids trajectory drifts that may arise in VSLAM algorithms if there is no loop-closure
for a long distance. Figure 5.11 shows the estimation errors for the UWB antenna locations
that, after an initial phase, become very small. In the first steps, the errors are very high due
to the unknown bearing and also on the particular path that the agent has traveled.
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In the second experiment the agent has been pulled around the room for 22.41 m while
the camera and the UWB antenna mounted on the agent were acquiring data from the en-
vironment. The agent movement has been stopped in four points that has been marked
and used as waypoints as mentioned in the previous experiment. During the experiment
two camera faults have been simulated preventing the system to use the open-loop Visual
Odometry and thus forcing the switching observer to adapt to the new perception configu-
ration (without any visual odometry available). The first fault occurs at about 26 s after the
beginning of the movement and it lasts for about 14 s, while the second fault has been caused
at about 70 s after the start and it lasts for about 8 s. Table 5.6 shows the effectiveness of the

Trajectory Mean Median STD

CLVO 0.0282 0.0341 0.0205
OLVO 0.0498 0.0411 0.0325

REKF-SLAM 0.0278 0.0333 0.0199
Table 5.6 Comparison of Euclidean distances between the 4 ground truth waypoints and the CLVO,
OLVO of ORB-SLAM2 and REKF-SLAM trajectory estimate evaluated in the waypoints (in m) for
the second experiment (best values are in bold).

proposed solution, which both avoids trajectory drifts and guarantees the system resilience
against camera sensor faults (i.e. the system is still able to work if the camera sensor has
a malfunction). Figure 5.12 depicts the closed-loop, open-loop Visual Odometry and the
estimated trajectories both during the normal operation and when the system detects camera
faults. Furthermore, the trajectory with the second camera sensor fault is affected by strong
multipath effect, as visible in the red dashed upper left trajectory in Figure 5.12. Nonetheless,
the system is still capable of filtering the disturbances and can give an acceptable estimate of
the agent trajectory1. As for computation times, the proposed algorithm adds a 5 % overhead
to the ORB-SLAM2 algorithm when it is functioning without any fault, while its computation
time is drastically reduced when a camera fault arises, performing 130 times faster than
the ORB-SLAM2 algorithm (computation times comparison have been performed on the
hardware platform specified in Section 5.2.1).

EuRoC Dataset Experiments

Finally, our algorithm has been validated using public datasets and real hardware experiments.
In particular, the presented algorithm has been compared to VINS-Mono, VIR SLAM and
ORB-SLAM2 computing the absolute trajectory error (ATE) on the EuRoC dataset [170]

1A video of the second experiment is available at https://youtu.be/kZd_W-vbFS0.

https://youtu.be/kZd_W-vbFS0
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Fig. 5.12 Closed-loop, open-loop Visual Odometry, REKF-SLAM trajectory and trajectory with
camera sensor faults and UWB antennas position. The ground truth waypoints are depicted with a red
x.

ATE Error (m) VINS-Mono ORB-SLAM2 (stereo) VIR SLAM REKF-SLAM

EuRoC MH_01 0.186 0.035 0.178 0.028
EuRoC MH_02 0.240 0.018 0.188 0.016
EuRoC MH_03 0.271 0.028 0.260 0.020
EuRoC MH_04 0.402 0.119 0.366 0.119
EuRoC MH_05 0.388 0.060 0.291 0.049

Table 5.7 ATE comparison between VINS-Mono, ORB-SLAM2, VIR SLAM and our REKF-SLAM.
The best values for ATE are presented in bold.

where ground truth is also available. The EuRoC dataset does not embed UWB ranging
measurements, so a methodology to generate and integrate those data into the dataset is
required. In [171] the authors suggest adding a static anchor assumed in the origin of
the frame created during the robot initialization; then they added a Gaussian white noise
N (0,0.05) to model the error of the UWB sensor. However, modeling the error in such a way
does not take into account the components related to the bias and the multipath errors of the
UWB sensor. So, the strategy adopted in our experiments, in order to aggregate UWB data, is
to train a deep neural network (DNN [172]) having as inputs real UWB sensor measurements,
real agent and UWB positions in order to also embed information about the real error profile
(comprising the Gaussian white noise, bias and multipath errors). Then we pass the ground
truth data from the EuRoC datasets with the virtual UWB positions and we use the trained
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Fig. 5.13 Ground truth, REKF-SLAM trajectory, trajectory with camera sensor faults and UWB
anchors position for the EuRoC MH_03 experiment where two faults have been simulated on the VO.

DNN network to generate synthetic data that have been used to feed our algorithm and to test
the system with a realistic set of data (images from the EuRoC original dataset and UWB
deep generated data). We would like to stress that the real UWB measurements were acquired
in an environment basically different from that of EuRoC dataset; however, the measurements
were acquired in an environment with dimensions similar to that of the EuRoC MH_01 to
MH_05 and it has been populated with objects similar to those in the EuRoC environment.
Table 5.7 shows how our REKF-SLAM algorithm outperform VINS-Mono, ORB-SLAM2
and VIR SLAM, where a single virtual UWB anchor, assumed to be in the origin of the
frame created during the robot initialization and whose measurements are always available,
is used. The metrics used for the comparison is ATE (Absolute Trajectory Error), defined as
the root mean square error from error matrices (see [173] for further details). Furthermore,
we want to show the system capability to cope with sensors failures (both when VO and
UWB measurements are not available) using run MH_03 from the EuRoC dataset. In the first
experiment we placed three virtual UWB anchors in (3.0,0.0),(6.0,6.0),(12.0,2.0) m and
run our algorithm simulating two VO faults in different moments and with different duration
(at minute 01 : 06 for 8 seconds and at minute 01 : 26 for 10 seconds). The results are showed
in Figure 5.13, where the ground truth is reported in red, the REKF-SLAM trajectory is black
when the system is working without faults and it is blue dotted when the VO is not available.
Furthermore, the ATE has been computed for the presented experiment being 0.045 m; the
ATE is slightly higher than that of ORB-SLAM2 in EuRoC MH_03 and this is something
reasonable given that the system for 18 s in the experiments is running without the VO and
uses the UWB measurements only that are affected by noise, as described in the previous
paragraph. Still, the ATE is acceptable and comparable to the results presented in Table 5.7.
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Fig. 5.14 Ground truth, REKF-SLAM trajectory and UWB anchors position for the EuRoC MH_03
experiment where the UWB maximum range has been set to 7 m.

The last experiment has been conducted using the EuRoC MH_03 dataset, with three virtual
UWB anchors in (3.0,0.0),(6.0,6.0),(12.0,2.0) m. Here the UWB maximum reading range
has been set to 7 m in order to simulate conditions where the UWB measurements are not
available for a variable amount of time and where sometimes all the three UWB anchors are
not available at all. Figure 5.14 shows the results of the experiment; the most challenging
situation is in the upper left part of the figure, where the agent is further than 7 m from the
three UWB anchors. Here the REKF-SLAM trajectory and ground truth differs more than
in the rest of the path since the UWB measurements are not available and the trajectory
estimation slightly degrades. However, the presented algorithm is able to maintain a low ATE
that, for this last experiment, is 0.025 m still lower than that of ORB-SLAM2 (0.028 m).

5.3 Application to a visual-UWB system with deep learning
approach

In this section the experiments carried out on a system based on visual odometry and UWB
range measurements with deep learning approach are reported. The experiments refer to the
multi sensor fusion paradigm presented in Section 4.3. The results will be presented from
real-world acquired measurements used to train the deep neural network on a simulation
environment in Section 5.3.1. These results have been compared to those obtained in
Section 5.2.1.
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5.3.1 Simulations

Dataset for training

In order to provide a dataset for the training of the deep neural network model presented
in Section 4.3.1, we resorted to the following setup: the indoor environment where the
acquisitions of the sensor measurements have been run is a 6×8.3 m2 space cluttered with
furniture, boxes (both wooden and metallic) and desks (similar to that shown in Figure 5.10-a).
The agent is equipped with an Intel RealSense D435i camera, an UWB EVB1000 board and a
Laptop with Intel Core i7-2640M CPU @ 2.80GHz, 16GB RAM as depicted in Figure 5.10-b.
The agent equipment is mounted on a four-wheeled platform trolley which can be moved
freely on the floor.

At the boundary of the walkable perimeter, three UWB EVB1000 boards that are the
same height as the one on the agent have been placed in unidentified positions. On the
aforementioned hardware, the ORB-SLAM2 method has been built in order to compute the
camera position at a rate of 15 Hz while the UWB range measurements are delivered at a rate
of 24 Hz. The trajectory estimated by the ORB-SLAM2 algorithm after a loop closure has
been used as ground truth.

The dataset for training the deep neural network is composed of 90000 samples (for each
input and output): 52 multiple acquisitions of about 5 min long time-series for the following
inputs xr,yr,zr,xui,yui,zui and for the output ρ (UWB range measurement).

Results

The simulations have been carried out in a simulated environment where three UWB anten-
nas have been placed in the area (6× 6 m2) and the results have been compared to those
obtained in Section 5.2.1 in terms of trajectory estimation quality (RMSE) and in estimation
of the UWB antenna locations. A set of 1000 simulations comprising 3000 steps has been
run in the simulation environment, with a fixed location for three UWB antennas in posi-
tion (3,6,0), (6,0,0), (0.2,2,0) m, while changing the agent trajectory in each simulation,
whose average length is about 30 m long. Here we want to underline that the results from
Section 5.2.1 have been obtained using an analytical model that does not take into account
some physical phenomena (like bias, multi-path, etc.). The results of a simulation, in terms
of agent trajectory, are reported in Figure 5.15. From this picture we can assess that the agent
estimated trajectory with the method presented in this section is much closer to the ground
truth trajectory compared to the trajectory estimated with the analytical model presented in
Section 5.2.1. Furthermore, the Root Square Error between the real and estimated trajec-
tories at each time-step is reported in Figure 5.16, showing how the method based on the
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Fig. 5.15 Indoor scenario with three UWB antennas located in position (3,6,0), (6,0,0), (0.2,2,0)
depicted as red circles in the picture. The ground truth trajectory is depicted in red, the trajectory
estimated with the math model (Section 5.2.1) is depicted in green, while the trajectory estimated
with the DNN measurement model presented in this section is depicted in blue.

DNN measurement model presents better results, reducing the RSE along almost the entire
trajectory (apart from the steps ranging in [250,500], where the RSE of the other method
performs better). Finally, we present the results of the estimation of the three UWB antenna
positions in Figure 5.17. From this picture it can be seen that the steady-state error between
the estimated and real position of the 3 UWB antennas is lower in the case of the DNN-based
measurement model, compared to the analytical model.

5.4 Application to a multiple visual system

In this section the results of the application of the multiple visual sensor fusion paradigm
presented in Section 4.4 will be reported. The results will be presented from several set of
real-world experiments that have been conducted and whose details will be presented in
Section 5.4.1.

5.4.1 Experimental results

A number of experiments have been used to quantify the performance and capabilities of
the sensor fusion system. The experiments were conducted in a facility that was 16× 12
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Fig. 5.16 RSE comparison between DNN and analytical measurement models. The Root Square Error
at each time step for the DNN measurement model (presented in this section) is depicted in blue, for
the analytical measurement model (from Section 5.2.1) is depicted in green.

Fig. 5.17 Position estimation error of UWB antenna positions between DNN and analytical measure-
ment models. The error at each time step for the DNN measurement model (presented in this section)
is depicted in blue, for the analytical measurement model (from Section 5.2.1) is depicted in green.
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m in size and filled with instructive items to aid vision-based localization algorithms. The
system’s accuracy has been assessed on a discrete trajectory specified by particular waypoints
at which measurements were collected due to a lack of sufficient equipment, such as a
Vicon system. Along the desired route, the waypoints that indicate the actual location
were inserted. A Hanmatek laser rangefinder with a ±1.5 mm precision was used to locate
them. The experiments were conducted in two stages: the first phase focused at gathering
data to fine-tune the spatial correction algorithm’s parameters, and the second phase aimed
at verifying the entire sensor fusion system. The training phase was conducted in the
manner depicted in Figure 5.18. In order to obtain the estimated pose of the individual
systems at the waypoints 3, 4, 5, 7, and 9 — the most instructive points along the entire
path — and because the accuracy of visual-based algorithms increases after loop closures,
a number of experiments were conducted. Figure 5.18 illustrates how the systems are
impacted by spatial expansion, as the accumulated error increases in proportion to the
distance from the starting point along both axes, using tracks estimated by ORB-SLAM2,
ZED Mini, and the PX4 EKF2 with the previous estimates blended with α1,α2 = 0.5 as
input. The following regressors parameters were determined from the training phase data:
(βx,0,βx,1,βy,0,βy,1) = (0.9953,−0.0044,0.9901,−0.0040). In order to assess the system’s
real performance, a different path from that used for training was used during the validation
phase. That validation path, as shown in Figure 5.19, has been completed with a different
direction of travel, which, for visual-based algorithms, generates a different behavior. It also
contains additional places that have not been previously observed, namely 12, 13, and 14,
and 15. Figure 5.19 qualitatively demonstrates that while the track estimated by the entire
fusion system is more precise, the systems individually behave as shown in Figure 5.18. The
RMSE between the locations of the waypoints and those predicted by the systems is shown
in Table 5.8.

The robustness to potential errors is another property of the suggested sensor fusion
system, and a second test was conducted to confirm this. Figure 5.20 illustrates how the
failure and reset of ORB-SLAM2 was caused during several legs, i.e. 3→ 4, 14→ 12, and
9→ 7, to demonstrate how the sensor fusion system continues to function and accurately
predicts the location with a single sensor.
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Waypoint Ground truth (x, y) [m] ORB-SLAM2 (x, y) [m] ZED Mini (x, y) [m] Fused (x, y) [m]
3 (2.053, 5.634) (1.952, 5.752) (2.042, 5.786) (2.056, 5.677)
4 (2.053, 1.676) (2.059, 1.718) (1.996, 1.837) (2.085, 1.778)
5 (4.788, 7.901) (4.737, 8.155) (4.821, 8.046) (4.780, 7.889)
7 (7.826, 8.501) (7.911, 8.844) (7.968, 8.683) (7.868, 8.510)
9 (12.986, 10.626) (13.396, 11.202) (13.269, 10.816) (12.956, 10.581)

14 (10.242, 0.900) (10.524, 0.905) (10.382, 0.732) (10.269, 0.825)
RMSE 0.361 0.196 0.034

Table 5.8 RMSE between the estimates (ORB-SLAM2, ZED Mini and fused) and the ground truth
waypoints; the best results are reported in bold.

Fig. 5.18 Trajectories estimated using ORB-SLAM2 (red), ZED Mini (green), and sensor fusion
system up to the blending stage (yellow) over the training path (black, dashed) defined by the following
waypoints: 1-2-5-6-7-8-9-10-7-6-5-2-3-4-1.

Fig. 5.19 Trajectories estimated using ORB-SLAM2 (red), ZED Mini (green), and full sensor fusion
system (blue) over the validation path (black, dashed) defined by the following waypoints: 1-4-3-2-
11-12-15-14-13-12-11-5-6-7-10-9-8-7-6-5-2-11-1.



5.4 Application to a multiple visual system 177

Fig. 5.20 Trajectories estimated using ORB-SLAM2 (red), ZED Mini (green), and full sensor fusion
system (blue) over the validation path (black, dashed); the ORB-SLAM2 system has been forced to
reset multiple times to test sensor fusion resilience to the loss of a sensor.





Chapter 6

Impact of research: resulting publications

This thesis presented algorithms, methodologies, and use cases to provide some answers to
the hypothesis using a multi-sensor fusion approach that uses both classical and deep learning-
based techniques to achieve resilient perception. Peer reviewed publications authored as
a result of research in this thesis are presented below to show the research impact of this
thesis, for a total of 18 papers. Note that Journal Papers are presented in bold typeface and
conferences in normal typeface.

1. Sensor resilience for localization: Proposed an approach to localization for au-
tonomous systems (unicycle-like robots) based on classical methodologies (e.g. EKF).
The sensor inputs range from UHF-RFID to UWB range sensors fusing encoders
mounted on the wheels. The designed system integrates sensor resilience.
Resulting publications:

a) Emidio Di Giampaolo, Francesco Martinelli, and Fabrizio Romanelli. A local-
ization system for autonomous vehicles based on trilateration tags. In 2022 16th
European Conference on Antennas and Propagation (EuCAP), pages 1–5, 2022.
[2]

b) Emidio Di Giampaolo, Francesco Martinelli, and Fabrizio Romanelli. Consid-
ering polarization mismatch in modeling the rfid phase offset variability for tag
localization. In 2022 IEEE 12th International Conference on RFID Technology
and Applications (RFID-TA), pages 21–24, 2022. [15]

2. Sensor resilience for SLAM: Proposed an approach to solve the Simultaneous Local-
ization And Mapping for autonomous systems (unicycle-like robots and autonomous
agents) based on classical methodologies (e.g. EKF). The sensor inputs range from
UHF-RFID to UWB range sensors fusing encoders and visual odometry systems
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mounted on the system. The designed system integrates sensor resilience.
Resulting publications:

a) Francesco Martinelli and Fabrizio Romanelli. A slam algorithm based on range
and bearing estimation of passive uhf-rfid tags. In 2021 IEEE International
Conference on RFID Technology and Applications (RFID-TA), pages 20–23,
2021. [1]

b) Francesco Martinelli and Fabrizio Romanelli. A resilient ro-slam algorithm
with bearing reconstruction of detected landmarks. In 2022 3rd International
Conference on Artificial Intelligence, Robotics and Control (AIRC), pages 61–66,
2022. [3]

c) Emidio Di Giampaolo, Francesco Martinelli, and Fabrizio Romanelli. Ro-
bust simultaneous localization and mapping using the relative pose esti-
mation of trilateration uhf rfid tags. IEEE Journal of Radio Frequency
Identification, 6:583–592, 2022. [4]

d) Emidio Di Giampaolo, Francesco Martinelli, and Fabrizio Romanelli. The
role of the rfid polarization mismatch in the simultaneous localization and
mapping problem. IEEE Journal of Radio Frequency Identification, 2023.
[5]

e) Emidio Di Giampaolo, Francesco Martinelli, and Fabrizio Romanelli. Exploiting
the orientation of trilateration uhf rfid tags in robot localization and mapping. In
2022 IEEE 12th International Conference on RFID Technology and Applications
(RFID-TA), pages 5–8, 2022. [6]

f) Fabrizio Romanelli, Francesco Martinelli, and Emidio Di Giampaolo. Ro-
bust simultaneous localization and mapping using range and bearing estima-
tion of radio ultra high frequency identification tags. IEEE Transactions on
Control Systems Technology, 31(2):772–785, 2023. [7]

g) Francesco Martinelli, Simone Mattogno, and Fabrizio Romanelli. A resilient
solution to range-only slam based on a decoupled landmark range and
bearing reconstruction. Robotics and Autonomous Systems, 160:104324,
2023. [8]

h) Fabrizio Romanelli, Francesco Martinelli, and Emidio Di Giampaolo. Robust
simultaneous localization and mapping using range and bearing estimation of
radio ultra high frequency identification tags. 2023 7th IEEE Conference on
Control Technology and Applications (CCTA 2023), 2023. [9]
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i) Fabrizio Romanelli, Francesco Martinelli, and Simone Mattogno. Resilient
simultaneous localization and mapping fusing ultra wide band range mea-
surements and visual odometry. Journal of Intelligent & Robotic Systems,
109(64), 2023. [10]

3. Improvement of sensing abilities: Developed a methodology to increase the sensing
abilities fusing several different visual odometry methodologies. The developed
algorithms have been tested and applied on UAVs. In the same context, a distributed
architecture for UASs based on ROS 2 has been designed and proposed.
Resulting publications:

a) Lorenzo Bianchi, Daniele Carnevale, Roberto Masocco, Simone Mattogno, Fed-
erico Oliva, Fabrizio Romanelli, and Alessandro Tenaglia. Efficient visual sensor
fusion for autonomous agents. In 7th International Conference on Control, Au-
tomation and Diagnosis (ICCAD’23). IEEE, 2023. [11]

b) Lorenzo Bianchi, Daniele Carnevale, Fabio Del Frate, Roberto Masocco,
Simone Mattogno, Fabrizio Romanelli, and Alessandro Tenaglia. A novel
distributed architecture for unmanned aircraft systems based on robot oper-
ating system 2. IET Cyber-Systems and Robotics, 5(1):e12083, 2023. [12]

c) Alessandro Navone, Fabrizio Romanelli, Marco Ambrosio, Mauro Martini, Si-
mone Angarano, and Marcello Chiaberge. Lavender autonomous navigation with
semantic segmentation at the edge. In Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, 2023. [13]

4. Sensor data processing and generation: Developed several methodologies to process
sensor data exploiting physical characteristics and phenomena (e.g. polarization
mismatch for RFID). Design and development of methodologies based on deep neural
networks (DNN) to generate realistic sensor data to be exploited in the experimental
setups.
Resulting publications:

a) Emidio Di Giampaolo, Francesco Martinelli, and Fabrizio Romanelli. Ex-
ploiting polarization mismatch to estimate the orientation of rotating uhf
rfid tags. IEEE Journal of Radio Frequency Identification, 2023. [14]

b) Emidio Di Giampaolo, Francesco Martinelli, and Fabrizio Romanelli. Exploiting
the electromagnetic coupling to estimate the close motion of uhf-rfid tagged
objects. In 2023 IEEE 13th International Conference on RFID Technology and
Applications (RFID-TA), 2023. [16]
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c) Fabrizio Romanelli and Francesco Martinelli. Synthetic Sensor Data Gener-
ation Exploiting Deep Learning Techniques and Multimodal Information.
IEEE Sensors Letters, vol. 7, no. 7, pp. 1-4, July 2023, Art no. 7003404, doi:
10.1109/LSENS.2023.3290209. [17]

d) Fabrizio Romanelli and Francesco Martinelli. Synthetic sensor measurement
generation with noise learning and multi-modal information. IEEE Access,
2023, 11:111765–111788, 2023. [18]



Chapter 7

Societal implications

The research presented in this Ph.D. dissertation has far-reaching implications for society.
Autonomous systems, such as self-driving cars, robots, and surveillance systems, are becom-
ing increasingly prevalent in our daily lives. As these systems rely heavily on perception to
interact with and navigate through the world, the advancements in perception technology
brought about by this research have significant societal impacts in several key areas. These
areas will be presented in this chapter. The importance of societal implications in technical
research has been highlighted in [174], in [175] and in [176]. Another interesting survey
focusing on the technology foresight for social good is reported in [177].

7.1 Enhancing safety and reliability

One of the most critical societal benefits of this research is the potential to enhance safety
and reliability in autonomous systems. As these systems become more integrated into
transportation, healthcare, and other sectors, the ability to make accurate real-time decisions
based on a robust understanding of the environment is paramount. The fusion of sensor data,
both classical and deep learning-based, improves perception accuracy, reducing the risk of
accidents and ensuring the safety of individuals who interact with autonomous systems.

7.1.1 Reduction in accidents

The primary societal benefit of improving perception technology in autonomous systems is
the significant reduction in accidents and related injuries. Autonomous vehicles, for instance,
have the potential to greatly reduce the number of accidents caused by human errors, which
are responsible for the majority of traffic accidents today. By fusing data from multiple
sensors and leveraging both classical and deep learning techniques, these vehicles can better
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understand their surroundings, anticipate potential hazards, and make split-second decisions
to avoid collisions. This not only saves lives but also reduces the economic costs associated
with accidents, including medical expenses, property damage, and lost productivity.

7.1.2 Improved pedestrian and cyclist safety

Pedestrians and cyclists are among the most vulnerable road users, and their safety is a
paramount concern. Advanced perception systems can significantly enhance safety for these
groups by accurately detecting and predicting their movements. For example, autonomous
vehicles equipped with robust perception can recognize pedestrians and cyclists even in
low-light conditions or when they are partially obscured by obstacles. This heightened
awareness can prevent accidents and create a safer environment for vulnerable road users.

7.1.3 Emergency response and disaster management

Beyond transportation, the improvement in perception technology has implications for
emergency response and disaster management. Autonomous drones and robots equipped
with enhanced perception capabilities can be deployed in disaster-stricken areas to assess
damage, locate survivors, and even deliver medical supplies. Their ability to navigate
challenging and hazardous environments with accuracy and reliability can expedite rescue
operations and ultimately save lives.

7.1.4 Healthcare applications

The impact of improved perception technology extends to the healthcare sector. Surgical
robots, for instance, benefit from precise perception systems that enable them to perform
minimally invasive surgeries with greater precision. These systems can reduce the risk of
complications and improve patient outcomes. Additionally, autonomous healthcare delivery
robots can navigate hospital environments safely, reducing the risk of cross-contamination
and enhancing the efficiency of healthcare services.

7.1.5 Aging population and accessibility

As the global population ages, there is a growing need for solutions that enable older
individuals to maintain their independence. Autonomous systems with advanced perception
capabilities can play a crucial role in assisting the elderly with tasks such as transportation,
medication management, and daily living activities. By ensuring the safety and reliability of
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these systems, society can empower older individuals to age in place comfortably and with
dignity.

7.2 Enabling autonomous mobility

Autonomous vehicles have the potential to revolutionize transportation, making it more
efficient and accessible. By improving perception accuracy and resilience to sensor failures,
this research contributes to the development of self-driving cars that can operate safely in
diverse weather conditions, busy urban environments, and even in emergency situations. This
can lead to reduced traffic congestion, fewer accidents, and increased mobility for individuals
who cannot drive due to disabilities or other reasons.

7.2.1 Revolutionizing transportation

One of the most noticeable and transformative societal impacts of improved perception
technology is its role in revolutionizing transportation through autonomous vehicles. These
vehicles have the potential to reshape urban mobility by providing safer, more efficient, and
accessible transportation options.

• Reduced Congestion: Autonomous vehicles can communicate with each other and
traffic infrastructure to optimize traffic flow, reducing congestion in urban areas. This,
in turn, decreases travel times, fuel consumption, and greenhouse gas emissions,
leading to cleaner and more sustainable cities.

• Accessibility: Autonomous mobility can significantly improve accessibility for individ-
uals who are unable to drive due to age, disability, or other reasons. Elderly individuals
and people with disabilities can gain greater independence and access to essential
services, such as healthcare, without relying on others for transportation.

• Ride-Sharing and Mobility as a Service (MaaS): Improved perception technology is
pivotal for the success of ride-sharing and MaaS platforms. Autonomous vehicles can
be seamlessly integrated into these services, offering convenient and cost-effective
transportation options. This can lead to reduced car ownership, lower traffic congestion,
and a shift towards more sustainable transportation models.

7.2.2 Urban planning and infrastructure

Enhanced perception technology also has a profound impact on public transportation systems.
Autonomous buses and shuttles can offer efficient and flexible transit options for both urban
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and rural areas. These systems can adapt to passenger demand in real time, reducing the need
for fixed routes and schedules. Consequently, public transportation becomes more accessible
and cost-effective, which benefits both urban and underserved communities.

7.2.3 Freight and logistics

Beyond passenger transportation, improved perception technology enables significant ad-
vancements in the logistics and freight industry. Autonomous trucks equipped with robust
perception systems can operate 24/7, increasing the efficiency of goods transportation. This
leads to reduced shipping costs, faster deliveries, and potentially lower prices for consumer
goods. Additionally, the ability to navigate complex logistics centers autonomously can
streamline supply chains, improving the availability of essential goods.

7.2.4 Environmental impact

The societal benefits of enhanced autonomous mobility extend to the environment. By
optimizing routes and reducing traffic congestion, autonomous vehicles can significantly
reduce greenhouse gas emissions and air pollution. This contributes to cleaner air, improved
public health, and a reduction in the societal costs associated with environmental degradation
and climate change.

7.2.5 Economic opportunities

The development and deployment of autonomous mobility technologies create economic
opportunities in research, development, manufacturing, and service industries. This can
lead to the creation of high-skilled jobs and stimulate economic growth. Furthermore, by
improving transportation efficiency, businesses can reduce operating costs and potentially
pass on savings to consumers.

7.3 Advancing robotics

In the realm of robotics, the research presented here has the potential to enable robots to
operate more effectively in dynamic and unstructured environments. Robust perception is
crucial for robots in fields such as manufacturing, agriculture, and healthcare, where they
need to adapt to changing conditions and collaborate with humans. Improved perception can
lead to more efficient and safer industrial processes and improved healthcare outcomes.
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7.3.1 Industrial automation and efficiency

One of the significant societal impacts of enhancing perception technology in robotics is the
advancement of industrial automation. Manufacturing and production industries can greatly
benefit from robots equipped with robust perception systems. These robots can precisely and
safely perform tasks such as assembly, quality control, and material handling. As a result,
manufacturing processes become more efficient, leading to higher productivity, reduced
production costs, and increased competitiveness in the global market.

7.3.2 Agriculture and food production

The agriculture sector is also poised to benefit from advanced perception technology in
robotics. Autonomous agricultural robots equipped with sophisticated perception capabilities
can perform tasks like planting, harvesting, and monitoring crop health with unprecedented
precision. This leads to increased crop yields, reduced reliance on chemical inputs, and more
sustainable farming practices. Moreover, it addresses the challenge of labor shortages in
agriculture and ensures a stable food supply for society.

7.3.3 Healthcare and assisted living

Robotics in healthcare is a promising field with numerous societal benefits. Robots with
advanced perception systems can assist medical professionals in tasks such as surgery, patient
care, and drug dispensing. These robots enhance the precision of medical procedures, reduce
the risk of human errors, and improve patient outcomes. In assisted living environments,
robots can assist the elderly and individuals with disabilities with daily tasks, promoting
independence and improving their quality of life.

7.3.4 Search and rescue

In emergency situations, such as natural disasters or building collapses, robots with advanced
perception capabilities can be deployed for search and rescue operations. These robots can
navigate through hazardous environments, locate survivors, and provide real-time information
to rescue teams. This significantly improves the effectiveness of emergency response efforts
and increases the chances of saving lives.
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7.3.5 Environmental monitoring and conservation

Advanced perception technology in robotics also has applications in environmental moni-
toring and conservation. Autonomous drones and underwater robots equipped with precise
sensors can collect data on ecosystems, climate change, and wildlife behavior. This informa-
tion is vital for making informed decisions related to environmental protection and resource
management.

7.3.6 Education and research

Robotics equipped with advanced perception systems are valuable tools in education and
research. They allow researchers and students to explore complex concepts in fields such
as artificial intelligence, computer vision, and machine learning. Additionally, these robots
can serve as educational tools for teaching STEM (science, technology, engineering, and
mathematics) subjects to students of all ages, thereby fostering a future-ready workforce.

7.3.7 Labor market impact

The integration of advanced perception technology in robotics raises questions about the
labor market. While it can lead to the automation of some tasks, it can also create new
job opportunities in fields related to robotics development, maintenance, and supervision.
Society must address the need for reskilling and upskilling the workforce to adapt to the
changing employment landscape.

7.4 Enhancing security and surveillance

Autonomous surveillance systems play a crucial role in public safety and security. By
improving perception accuracy and resilience, this research can contribute to the development
of surveillance systems that can better detect and respond to security threats. This is
particularly relevant in areas such as border control, airport security, and public event
monitoring, where rapid and accurate threat detection is essential.

7.4.1 Improved threat detection

Enhanced perception technology in security and surveillance systems is paramount for
improving threat detection capabilities. It allows for more accurate and timely identification
of potential security threats, including intruders, suspicious objects, and unauthorized access.
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This heightened level of threat detection is vital for protecting critical infrastructure, public
spaces, and private property.

7.4.2 Public safety

In public spaces such as airports, train stations, and shopping malls, advanced perception
technology enhances public safety. Surveillance systems with improved perception capa-
bilities can monitor large crowds and identify potential security risks or emergencies. This
proactive approach to public safety can lead to rapid response times and the prevention of
incidents that could endanger lives.

7.4.3 Counterterrorism and law enforcement

The fight against terrorism and crime benefits significantly from advanced perception tech-
nology. Surveillance systems equipped with precise sensors and machine learning algorithms
can identify suspicious behaviors and individuals, aiding law enforcement in their efforts
to prevent and investigate criminal activities. These technologies provide a force multiplier
effect, allowing law enforcement agencies to cover larger areas and respond more effectively.

7.4.4 Critical infrastructure protection

Critical infrastructure, such as power plants, water treatment facilities, and transportation
hubs, is vulnerable to various threats. Enhanced security and surveillance systems with
advanced perception capabilities help protect these assets from physical and cyber threats.
The ability to detect and respond to security breaches promptly is crucial for ensuring the
continuity of essential services and safeguarding national interests.

7.4.5 Privacy considerations

While advanced perception technology enhances security and surveillance, it also raises
important privacy considerations. Striking the right balance between security and privacy
is a societal challenge. Ethical deployment of surveillance technology, clear policies, and
transparency are essential to maintain public trust and protect individual privacy rights.

7.4.6 Crime deterrence

The presence of surveillance systems with advanced perception capabilities can act as a
deterrent to criminal activity. Potential wrongdoers are less likely to engage in illegal
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activities when they know they are being monitored. This deterrence effect contributes to the
overall reduction in crime rates, creating safer communities.

7.4.7 Emergency response

In emergency situations, such as natural disasters or large-scale accidents, advanced percep-
tion technology can provide critical information to first responders. Surveillance systems
equipped with precise sensors can assess the extent of damage, locate survivors, and guide
emergency response efforts, thereby saving lives and reducing the impact of disasters on
communities.

7.5 Economic impact

The widespread adoption of autonomous systems can have a significant economic impact. Im-
proved perception can lead to cost savings through reduced accidents, increased productivity,
and more efficient resource utilization. Additionally, the development and deployment of ad-
vanced perception technologies can stimulate economic growth by creating job opportunities
in research, development, and manufacturing.

7.5.1 Job creation and skills development

The advancement of perception technology in autonomous systems creates new job opportu-
nities across various sectors. Research and development in robotics, artificial intelligence,
and machine learning are essential components of this progress. Engineers, data scientists,
software developers, and technicians are in high demand to design, develop, maintain, and
operate these sophisticated systems. As a result, the job market expands, and individuals
have the opportunity to pursue rewarding careers in cutting-edge fields.

7.5.2 Manufacturing and supply chain efficiency

The integration of advanced perception technology in manufacturing and logistics leads
to increased efficiency and reduced production costs. Automation and robotics systems
equipped with precise perception capabilities can operate around the clock with minimal
downtime. This efficiency translates into cost savings for businesses, which can be passed on
to consumers through lower prices or invested in research and development to drive further
innovation.
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7.5.3 Market growth and innovation

Improved perception technology drives innovation in various industries. As autonomous
systems become more capable and reliable, they enable the development of entirely new
products and services. This innovation not only expands market opportunities but also fosters
competition, leading to more choices and better-quality products for consumers.

7.5.4 Global competitiveness

Nations that invest in and adopt advanced perception technology gain a competitive edge in
the global marketplace. Businesses that leverage these technologies can deliver higher-quality
products and services, often at a lower cost, making them more competitive internationally.
This, in turn, contributes to economic growth and increased exports.

7.5.5 Entrepreneurship and startups

The accessibility of advanced perception technology and the availability of data-driven
solutions create fertile ground for entrepreneurship and startups. Innovators and entrepreneurs
can identify new market niches and develop solutions to address them. This entrepreneurial
ecosystem fosters creativity, job creation, and economic dynamism.

7.5.6 Economic resilience

During economic downturns or disruptions, businesses equipped with advanced perception
technology may exhibit greater resilience. The automation and efficiency gains realized
through these technologies can help companies weather economic challenges by reducing
operational costs and maintaining productivity even in adverse conditions.

7.5.7 Cross-industry collaboration

The development of advanced perception technology often involves cross-industry collabora-
tion. Academia, government agencies, and private sector companies collaborate on research
and development projects. This collaborative environment enhances knowledge sharing,
accelerates technological progress, and contributes to economic growth.

7.5.8 Infrastructure investment

Governments and private sector entities often invest in infrastructure to support advanced
perception technology. This includes the deployment of sensors, communication networks,
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and data centers. Such investments create construction jobs and stimulate economic activity
in related sectors.

7.5.9 Increased access to education and training

The demand for skilled professionals in fields related to perception technology leads to
increased access to education and training programs. Educational institutions offer courses,
certifications, and degree programs in artificial intelligence, robotics, and data science,
enabling individuals to acquire the skills needed for high-demand jobs.

7.6 Ethical considerations

As autonomous systems become more integrated into society, ethical considerations become
increasingly important. The research presented here also addresses some of these ethical
concerns. The ability to detect and respond to sensor failures, for example, is crucial for
ensuring the responsible use of autonomous systems and mitigating the potential for harm.

7.6.1 Privacy and surveillance

One of the most significant ethical considerations related to advanced perception technology
is the balance between security and privacy. The widespread use of surveillance systems with
enhanced perception capabilities can raise concerns about the potential invasion of privacy.
It is crucial to establish clear policies and regulations that govern how data collected by these
systems is used, stored, and shared. Additionally, the implementation of privacy-preserving
technologies, such as anonymization and encryption, can help mitigate privacy risks.

7.6.2 Bias and fairness

Advanced perception technology, particularly those powered by machine learning algorithms,
can inadvertently perpetuate bias and discrimination. If training data used to develop these
systems contains biases, the technology may produce unfair or discriminatory outcomes.
Ethical considerations include addressing bias in algorithms, ensuring fairness in decision-
making processes, and promoting transparency in how these systems work.
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7.6.3 Accountability and liability

As autonomous systems become more sophisticated, questions arise regarding accountability
and liability in the event of accidents or unintended consequences. Determining who is
responsible when an autonomous vehicle is involved in a collision, for instance, raises
complex ethical and legal questions. Developing clear frameworks for assigning responsibility
and liability is essential to ensure that individuals and organizations are held accountable for
their actions.

7.6.4 Safety and reliability

Ethical considerations also encompass the safety and reliability of autonomous systems.
Ensuring that these systems are designed to prioritize safety and minimize risks is paramount.
This includes implementing fail-safe mechanisms, robust testing procedures, and continuous
monitoring to prevent accidents and minimize harm.

7.6.5 Transparency and explainability

Transparency and explainability are essential ethical principles in the context of perception
technology. End-users and stakeholders should have a clear understanding of how these
systems make decisions and interpret sensor data. Explainable AI (XAI) methods are being
developed to make machine learning models more transparent and interpretable, allowing
users to trust and validate their decisions.

7.6.6 Human autonomy and control

Ethical concerns extend to the degree of human autonomy and control in autonomous systems.
There is a need to strike a balance between automation and human decision-making. Ensuring
that humans can intervene and override autonomous systems in critical situations is an ethical
imperative to prevent undue reliance on technology.

7.6.7 Data security and cybersecurity

The protection of data and systems from cyberattacks and data breaches is an ethical obli-
gation. Advanced perception technology relies heavily on data collection and processing,
making it vulnerable to malicious actors. Robust cybersecurity measures, including encryp-
tion, regular security audits, and secure data storage, are necessary to safeguard sensitive
information and prevent unauthorized access.
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7.6.8 Environmental impact

Ethical considerations extend to the environmental impact of perception technology. The
production and disposal of hardware components, energy consumption, and electronic
waste management are areas where ethical choices can influence sustainability. Sustainable
practices, such as using eco-friendly materials and optimizing energy usage, align with
ethical responsibilities to protect the environment.

7.6.9 Accessibility and inclusivity

Ethical considerations also encompass ensuring that advanced perception technology is
accessible and inclusive for all individuals, including those with disabilities. Designing
systems that accommodate diverse needs and providing equitable access to the benefits of
these technologies are ethical imperatives.

7.6.10 Ethical governance and regulation

Establishing ethical governance and regulatory frameworks is essential to address the evolv-
ing ethical challenges posed by advanced perception technology. Governments, industry
stakeholders, and ethical advisory boards play a crucial role in setting standards, enforcing
regulations, and ensuring responsible development and deployment of these technologies.

7.7 Final considerations

In conclusion, the research on multi-sensor fusion for autonomous resilient perception has
profound societal impacts, ranging from improved safety and mobility to advancements in
various industries and economic growth. However, it also comes with ethical responsibilities,
and it is essential to continue exploring how these technologies can be deployed responsibly
and in ways that benefit society as a whole. This research contributes to the ongoing dialogue
on the integration of autonomous systems into our daily lives and emphasizes the importance
of robust and reliable perception in shaping a safer and more efficient future.



Chapter 8

Conclusions and perspectives

In this thesis, we have embarked on a journey to explore the techniques of multi-sensor
fusion for autonomous resilient perception, leveraging the power of classical methodologies
and deep learning techniques. Our aim was to enhance the reliability and robustness of
perception systems by exploiting the strengths of both approaches. By integrating classical
methodologies such as the Extended Kalman Filter (EKF) with cutting-edge deep learning
algorithms, we sought to achieve a comprehensive framework capable of effectively fusing
sensor data and detecting anomalies or faults in measurements. Throughout this research,
we delved into the fundamental concepts and principles of sensor fusion, recognizing its
critical role in enabling autonomous systems to make accurate decisions in real-world
environments. We explored the limitations and challenges associated with traditional sensor
fusion techniques and acknowledged the potential of deep learning to overcome these hurdles.
One of the key contributions of this thesis was the investigation of classical methodologies for
sensor fusion, particularly the EKF. We examined the mathematical foundations of the EKF
and its applicability in fusing measurements from multiple sensors. By incorporating this
approach into our framework, we were able to exploit the temporal dependencies between
sensor data and obtain more accurate and robust estimates of the environment. Moreover, we
recognized the power of deep learning techniques in handling complex and unstructured data.
Deep learning has revolutionized many fields, including computer vision, natural language
processing, and speech recognition. We harnessed the potential of deep learning algorithms
to enhance our perception system by employing them to detect outliers in measurements
and identify sensor faults. The integration of deep learning methodologies enabled us to
augment the resilience and adaptability of our framework, ensuring reliable and consistent
performance even in the presence of sensor anomalies.

Throughout our experiments and evaluations, we witnessed the effectiveness and potential
of our proposed multi-sensor fusion framework. By combining classical methodologies with
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deep learning techniques, we achieved significant improvements in the perception capabilities
of autonomous systems. Our framework demonstrated the ability to accurately estimate the
state of the environment, detect outliers and faults in sensor data, and adapt to changing
conditions. These advancements contribute towards the realization of autonomous systems
that can operate reliably and effectively in dynamic and uncertain environments. However,
it is important to acknowledge the limitations and areas for future research in this field.
While our framework showed promising results, there are still challenges to address. The
computational complexity of deep learning algorithms, especially in real-time applications,
can be a bottleneck. Future work should focus on optimizing these algorithms and exploring
more efficient architectures to enable their seamless integration into real-time perception
systems.

Furthermore, the integration of classical methodologies and deep learning techniques
opens up new avenues for research. Investigating novel ways to combine these approaches,
such as incorporating deep learning into the EKF framework or designing hybrid fusion
architectures, could yield even more robust and resilient perception systems. In conclusion,
this thesis has contributed to the advancement of multi-sensor fusion for autonomous resilient
perception. By leveraging classical methodologies such as the EKF and integrating deep
learning techniques for outlier detection and sensor fault identification, we have built a
comprehensive framework capable of fusing sensor data effectively. Our experimental results
showcase the enhanced reliability and robustness of our proposed framework, paving the
way for the development of autonomous systems that can operate autonomously in complex
and uncertain environments.

As we look to the future, the fusion of classical methodologies and deep learning tech-
niques will continue to play a pivotal role in the evolution of autonomous systems. With
ongoing advancements in sensor technology, the proliferation of deep learning algorithms,
and the increasing demand for resilient perception, this field holds great potential for further
exploration and innovation. By combining the strengths of classical methodologies and
deep learning techniques, we can unlock the full potential of multi-sensor fusion and create
perception systems that exhibit unparalleled reliability, adaptability, and autonomy.

In the following sections we describe the perspectives for each of the aspects and topics
that have been covered along the dissertation.
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8.1 Perspectives for sensor resilience for localization and
SLAM

This section explores the future perspectives for sensor resilience in the domains of lo-
calization and Simultaneous Localization and Mapping (SLAM) within the context of the
dissertation. The thesis made significant contributions by leveraging classical methodologies,
including the Extended Kalman Filter (EKF), and incorporating deep learning techniques for
outlier detection in measurements. Building upon these accomplishments, this section delves
into potential avenues of research and development for enhancing sensor resilience in the
context of localization and SLAM.

Future advancements in sensor technology hold immense potential for improving sensor
resilience in localization and SLAM. Emerging sensor modalities, such as LiDAR, radar, and
depth cameras, are capable of providing richer and more comprehensive data. Integration of
these modalities with existing sensor suites can enhance the robustness and reliability of the
perception system. Exploring the benefits of multi-modal sensor fusion and investigating
novel sensor technologies will contribute to further advancements in sensor resilience. Fur-
thermore, the integration of classical methodologies, such as the EKF, with deep learning
techniques opens up exciting possibilities for sensor resilience in localization and SLAM.
Future research should focus on seamlessly combining these approaches to maximize their
complementary strengths. Investigating novel fusion architectures that leverage both clas-
sical methodologies and deep learning algorithms can enhance the resilience and accuracy
of localization and mapping processes. The development of hybrid approaches that fuse
the temporal dependencies captured by classical methods with the representation learning
capabilities of deep learning can lead to more robust and reliable sensor fusion frameworks.
Then, ensuring the robustness of sensor measurements against faults and anomalies is crucial
for resilient localization and SLAM. Future research should concentrate on advancing sensor
fault detection and mitigation techniques. Expanding on the work done in the thesis, further
exploration of deep learning algorithms for real-time detection of sensor anomalies and faulty
measurements can enhance the ability to detect and mitigate sensor faults. Investigating
adaptive fusion algorithms that dynamically select and weight sensor measurements based
on their reliability and confidence levels will contribute to the development of more resilient
sensor fusion frameworks.

The integration of machine learning algorithms within the realm of localization and
SLAM offers exciting possibilities for improving sensor resilience. Future research should
focus on developing learning-based approaches that reduce dependency on specific sensor
modalities and enhance adaptability to different environments. Investigating deep learning
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techniques for feature extraction and mapping in SLAM can enhance the ability to handle
complex and dynamic environments. Furthermore, exploring reinforcement learning methods
to optimize sensor selection and fusion strategies can significantly improve localization accu-
racy and sensor resilience. Furthermore, robust uncertainty quantification and management
are vital for sensor resilience in localization and SLAM. Future research should concen-
trate on developing techniques for estimating and propagating uncertainties in fused sensor
measurements, accounting for both systematic and random errors. Investigating adaptive
sensor fusion algorithms that dynamically adjust their behavior based on confidence levels
and uncertainties associated with each sensor will enhance the robustness and reliability of
the localization and mapping processes.

Validation and evaluation of the proposed techniques in real-world scenarios and diverse
environments are essential for the advancement of sensor resilience in localization and
SLAM. Future research should focus on conducting experiments in challenging conditions,
such as adverse weather, dynamic environments, or sensor failures, to assess the robust-
ness and resilience of the sensor fusion framework. Collaborating with industry partners
and autonomous vehicle manufacturers to deploy and validate the developed techniques
in commercial applications will bridge the gap between academic research and practical
implementation.

8.2 Perspectives for improvement of sensing abilities

This section explores future perspectives for the improvement of sensing abilities within the
context of the dissertation. The thesis made significant contributions by employing various
visual odometry systems applied to Unmanned Aerial Vehicles (UAVs). Building upon
these achievements, this section discusses potential avenues of research and development for
enhancing the sensing capabilities of autonomous systems.

Advancements in sensor technology play a vital role in improving the sensing abilities
of autonomous systems. Future research should focus on exploring emerging sensor tech-
nologies and their integration with existing sensor suites. Sensors such as improved cameras,
LiDAR, and thermal sensors can enhance the perception capabilities of UAVs, enabling them
to operate in diverse environmental conditions. Additionally, investigating miniaturized and
lightweight sensor solutions can optimize the trade-off between sensing capabilities and the
overall weight and energy consumption of the UAV system. The integration of multi-sensor
fusion techniques is key to improving the robustness and reliability of sensing abilities.
Future research should concentrate on developing advanced fusion algorithms that effectively
combine data from various sensors, including visual odometry systems, inertial measurement
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units, and environmental sensors. Investigating novel fusion architectures that leverage the
strengths of classical methodologies, such as Kalman filters, and deep learning techniques
can enhance the accuracy and resilience of sensor fusion. Accurate sensor calibration and syn-
chronization are critical for achieving precise and reliable sensing abilities. Future research
should focus on developing techniques for calibrating and synchronizing sensors, particularly
in UAV platforms where size, weight, and power constraints pose challenges. Investigating
self-calibration and online calibration methods can reduce the reliance on manual calibration
procedures, enabling real-time adaptability and robustness in the face of sensor drift and
changing environmental conditions. Furthermore, autonomous systems often operate in
challenging environments with limited visibility, adverse weather conditions, and dynamic
surroundings. Future research should concentrate on enhancing the sensing abilities of UAVs
in such challenging scenarios. Investigating sensor fusion techniques that can effectively
handle occlusions, sensor noise, and environmental disturbances can improve perception
accuracy. Additionally, exploring advanced imaging techniques, such as thermal imaging
or hyperspectral imaging, can enable the detection and recognition of objects in low-light
conditions or in the presence of camouflage.

Finally, efficient and real-time processing of sensor data is essential for the timely
decision-making capabilities of autonomous systems. Future research should focus on
developing algorithms and architectures that optimize the computational efficiency of sensor
fusion and perception tasks. Exploring techniques such as hardware acceleration, distributed
computing, and task allocation can ensure real-time performance while optimizing resource
utilization in UAV systems. Validation and benchmarking of sensing abilities are crucial for
assessing system performance and advancing the field. Future research should concentrate
on developing standardized datasets, metrics, and evaluation protocols for comparing and
benchmarking different sensing algorithms and techniques. Collaborative efforts within the
research community and industry partnerships can facilitate the collection of comprehensive
datasets in various operating conditions, enabling rigorous evaluation and validation of
sensing abilities.

8.3 Perspectives for sensor data processing and generation

This section explores future perspectives for sensor data processing and generation within the
context of the dissertation. The thesis made significant contributions by employing classical
methodologies to generate sensor data and utilizing deep generative learning techniques to
generate realistic sensor data. Building upon these accomplishments, this section discusses
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potential avenues of research and development for enhancing the processing and generation
of sensor data in autonomous systems.

Advancements in sensor data processing techniques play a crucial role in improving
the quality, accuracy, and efficiency of sensor data utilized in autonomous systems. Future
research should focus on exploring novel algorithms and methodologies for processing sensor
data from diverse sources, including visual, inertial, and environmental sensors. Investigating
advanced signal processing techniques, such as filtering, denoising, and feature extraction,
can enhance the robustness and reliability of sensor data. Additionally, developing effi-
cient and real-time data processing algorithms that can handle the high volume of sensor
data generated by autonomous systems will be crucial for their practical implementation.
The integration of classical methodologies and deep learning approaches offers promising
possibilities for enhancing sensor data processing. Future research should concentrate on
seamlessly combining the strengths of classical methodologies, such as statistical signal
processing and model-based approaches, with deep learning techniques, including convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs). Investigating hybrid
fusion architectures that leverage the complementary strengths of these approaches can
enhance the accuracy and resilience of sensor data processing. Furthermore, developing
novel algorithms that incorporate prior knowledge and domain-specific constraints within
deep learning frameworks can improve the interpretability and reliability of generated sensor
data. Deep generative learning techniques have demonstrated potential in generating realistic
sensor data, which can be valuable for various applications, including training and testing
autonomous systems. Future research should focus on developing advanced generative mod-
els, such as generative adversarial networks (GANs) and variational autoencoders (VAEs),
tailored specifically for sensor data generation. Investigating techniques for incorporat-
ing domain knowledge, physical constraints, and uncertainty estimation within generative
models can enhance their fidelity and applicability to real-world scenarios. Additionally,
exploring techniques for generating diverse and representative sensor data that encompass
various environmental conditions, sensor characteristics, and anomalies will be crucial for
improving the generalization and resilience of autonomous systems. Data augmentation
and simulation techniques can significantly contribute to the improvement of sensor data
processing and generation. Future research should concentrate on developing advanced data
augmentation algorithms that can effectively expand the diversity and quantity of training
data. Investigating simulation environments that accurately model sensor characteristics,
environmental conditions, and system dynamics can enable the generation of synthetic sensor
data for training and testing autonomous systems. Furthermore, developing techniques for
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bridging the gap between synthetic and real sensor data can enhance the transferability and
applicability of simulated data to real-world scenarios.

Finally, quantifying and managing uncertainty in sensor data is crucial for ensuring
reliable and robust decision-making in autonomous systems. Future research should focus on
developing techniques for uncertainty quantification in sensor data processing and generation.
Investigating methods for estimating and propagating uncertainties within sensor data fusion
frameworks can enhance the reliability and resilience of autonomous systems. Additionally,
exploring techniques for representing and incorporating uncertainties within generative mod-
els can improve the trustworthiness and interpretability of generated sensor data. Validation
and benchmarking of sensor data processing and generation techniques are essential for
assessing their performance and advancing the field. Future research should concentrate on
developing standardized evaluation protocols, metrics, and benchmark datasets that enable
rigorous comparison between the generated data and the real data from sensors.
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